ARDUINO CON ARDUINOBLOCKS

Objetivos y contenidos

Objetivos

Contenidos

Introducción

Introducción

Kit de Arduino con Arduinoblocks

El paquete consta de una docena de los siguientes elementos

kitarduino.jpg

El coste se ha optimizado a casi 24€ por robot, y con preferencia empresas españolas. Con diferencia, el kit que presentamos tiene mejor relación calidad/precio que los kits que venden comerciales, incluso en sitios "baratos" como Aliexpress ver unos ejemplos 

Recomendamos el siguiente artículo de Luis Llamas que da buenos consejos sobre las compras de los kits de iniciación de Arduino, coincide con nuestro criterio es mejor comprar los elementos separados y a empresas españolas online que kits ya prefabricados a empresas tipo Amazon, Aliexpress... sobre todo porque en esos kits ponen elementos innecesarios y la relación calidad/precio es muy baja. Ver https://www.luisllamas.es/kit-de-iniciacion-barato-para-empezar-en-arduino/

Introducción

Pensamiento computacional

¿Dónde se encaja este robot?¿se puede comparar este robot con otros robots de otros cursos que hacemos desde CATEDU?

Esta es la hoja de ruta que proponemos, no se tiene que tomar al pie de la letra, pero intenta ayudar al profesorado que tenga una visión global de tanta oferta:

Como se puede ver ARDUINO CON ARDUINOBLOCKS tiene la ventaja de tener un precio razonable, y dentro del rango de programación en bloques del Arduino en primaria.

Oferta de formación en Pensamiento computacional del Centro Aragonés de Tecnologías para la Educación.

Tenemos un grupo Telegram Robótica Educativa en Aragón, si estás interesado en unirte, envía un mensaje por Telegram (obligatorio) a CATEDU 623197587 https://t.me/catedu_es y te añadimos en el grupo

Introducción

Robótica y accesibilidad

1.- Introducción

Durante mucho tiempo la robótica fue patrimonio de personas y/o instituciones con alta capacidad económica (podían adquirir las placas con microcontroladores comerciales) y capacidad intelectual (podían entender y programar el funcionamiento de las mismas) siempre dentro de los límites establecidos por las marcas comerciales y lo que pudieran “desvelar” de su funcionamiento, vigilando siempre que la competencia no “robara” sus secretos y “copiara” sus soluciones.

Todo esto saltó por los aires en torno a 2005 con la irrupción de un grupo de profesores y estudiantes jóvenes, que decidieron romper con esta dinámica, tratando de poner a disposición de su alumnado microcontroladores económicamente accesibles y que les permitieran conocer su funcionamiento, sus componentes, e incluso replicarlos y mejorarlos. Nacía Arduino y el concepto de Hardware Open Source. Detrás de este concepto se encuentra la accesibilidad universal. En un proyecto Open Source todo el mundo puede venir, ayudar y contribuir, minimizando barreras económicas e intelectuales.

Arduino traslada al hardware un concepto ya muy conocido en el ámbito del software, como es el software open source o software libre.

opensource.png

Software libre

Cuando los desarrolladores de software terminan su creación, tienen múltiples posibilidades de ponerlo a disposición de las personas, y lo hacen con condiciones específicas especificadas en una licencia. Esta licencia es un contrato entre el creador o propietario de un software y la persona que finalmente acabará utilizando este software. Como usuarios, es nuestro deber conocer las condiciones y permisos con las que el autor ha licenciado su producto, para conocer bajo qué condiciones podemos instalar y utilizar cada programa.

Existen muchas posibilidades de licencias: software privativo, comercial, freeware, shareware, etc.. Nos centraremos aquí en la de software libre.

GNU (https://www.gnu.org) es una organización sin ánimo de lucro que puso una primera definición disponible de lo que es software libre: Software libre significa que los usuarios del software tienen libertad (la cuestión no es el precio). Desarrollaron el sistema operativo GNU para que los usuarios pudiesen tener libertad en sus tareas informáticas. Para GNU, el software libre implica que los usuarios tienen las cuatro libertades esenciales:

1. ejecutar el programa.
2. estudiar y modificar el código fuente del programa.
3. redistribuir copias exactas.
4. distribuir versiones modificadas.

En otras palabras, el software libre es un tipo de software que se distribuye bajo una licencia que permite a los usuarios utilizarlo, modificarlo y distribuirlo libremente. Esto significa que los usuarios tienen libertad de ejecutar el software para cualquier propósito, de estudiar cómo funciona el software y de adaptarlo a sus necesidades, de distribuir copias del software a otros usuarios y de mejorar el software y liberar las mejoras al público.

El software libre se basa en el principio de la libertad de uso, y no en el principio de la propiedad. Esto significa que los usuarios tienen la libertad de utilizar el software de la manera que deseen, siempre y cuando no violen las condiciones de la licencia. El software libre es diferente del software propietario, que es el software que se distribuye con restricciones en su uso y modificación. El software propietario suele estar protegido por derechos de autor y solo se puede utilizar bajo los términos y condiciones especificados por el propietario del software.

Recomendamos la visualización de este video para entender mejor el concepto.

Más adelante, entorno a 2015, en Reino Unido, surgiría también la placa BBC Micro:bit, con la misma filosofía de popularizar y hacer accesible en este caso al alumnado de ese país la programación y la robótica. También hablaremos de ella.

2.- ARDUINO o LA ROBÓTICA ACCESIBLE

Arduino es una plataforma de hardware y software libre.

Hardware libre

Esto significa que tanto la placa Arduino como el entorno de desarrollo integrado (IDE) son de código abierto. Arduino permite a los usuarios utilizar, modificar y distribuir tanto el software como el hardware de manera libre y gratuita, siempre y cuando se respeten las condiciones de las licencias correspondientes.

El hardware libre es un tipo de hardware cuya documentación y diseño están disponibles de manera gratuita y libre para su modificación y distribución. Esto permite a los usuarios entender cómo funciona el hardware y adaptarlo a sus necesidades, así como también crear sus propias versiones modificadas del hardware.

Arduino surge como solución al elevado precio de los microcontroladores allá por el año 2005. En el ámbito de la educación, los microcontroladores solo se utilizaban en la etapa universitaria, y su coste era tan elevado que muchos proyectos de fin de carrera se quedaban únicamente en prototipos virtuales ya que las universidades no podían proveer a cada estudiante con un microprocesador, contando además que en el propio proceso de experimentación lo más habitual era que una mala conexión hiciera que se rompieran. Otro gran inconveniente era la dificultad de la programación. Cada fabricante entregaba su manual de programación, lo que hacía que de unos a otros no hubiera un lenguaje estándar, y la consecuente dificultad de interpretación. Además, su programación era a bajo nivel en lenguaje máquina. Generar una simple PWM requería una ardua y minuciosa secuenciación que podía llevar varias horas hasta conseguir el resultado deseado. Por este motivo, el enfoque de Arduino desde el principio fue ser Open Source tanto en hardware como en software. El desarrollo del hardware fue la parte más sencilla. Orientado a educación, sufre algunas modificaciones frente a los microprocesadores existentes para hacer más fácil su manejo y accesibilidad a cualquier sensor o actuador. El mayor esfuerzo se entregó en todas las líneas de código que hacían posible que ya no hubiera que programar a bajo nivel gracias al IDE de Arduino que incluía bibliotecas y librerías que estandarizaban los procesos y hacían tremendamente sencillo su manejo. Ahora el alumnado para mover un motor, ya no tenía que modificar las tramas de bits del procesador una a una, sino que bastaba con decir que quería moverlo en tal dirección, a tal velocidad, o a equis grados.

Acabábamos de pasar de unos costes muy elevados y una programación muy compleja a tener una placa accesible, open source y de bajo coste que además hacía muy accesible su programación y entendimiento, características fundamentales para su implantación en educación, hasta tal punto que su uso ya no era exclusivo de universidades, sino que se extiende a la educación secundaria.

arduinosecundaria.png

Este hecho es fundamental para el desarrollo del Pensamiento Computacional en el aula observándose que su accesibilidad y beneficios son tales, que alcanzan a centros con alumnado de toda tipología como la aplicación del pensamiento computacional y robótica en aulas con alumnos de necesidades especiales. Una vez más, aparece el concepto de accesibilidad asociado a esta filosofía Open Source.

A este respecto, recomendamos la lectura de este interesante blog, que tiene por título: ROBOTIQUEAMOS...” Experiencia de aproximación a la robótica en Educación Especial (CPEE ÁNGEL RIVIÈRE). También recomendamos los trabajos robótica en Educación Especial (CPEE ÁNGEL RIVIÈRE):  http://zaragozacpeeangelriviere.blogspot.com/search/label/ROB%C3%93TICA

blogRobotiqueamos.jpg

Igualmente, la aparición de Arduino supone una gran facilidad para la aplicación de la robótica y la programación en la atención temprana, donde son numerosas sus aplicaciones desde ayudar a mitigar el déficit de atención en jóvenes autistas, hasta ayudar a socializar a los alumnos con dificultades para ello, o ayudar a alumnos de altas capacidades a desarrollar sus ideas.

Por otro lado su accesibilidad económica lo ha llevado a popularizarse en países de todo el mundo, especialmente en aquellos cuyos sistemas educativos no disponen en muchas ocasiones de recursos suficientes, lo que supone en la práctica una democratización del conocimiento y superación de brecha digital.

Filosofía del Arduino ver vídeo

Arduino y su IDE son la primera solución que aparece en educación con todas las ventajas que hemos enumerado, y esto hace que todos los nuevos prototipados y semejantes tengan algo en común, siempre son compatibles con Arduino

Para entender bien la filosofía de Arduino y  el hardware libre, os recomendamos este documental de 30 minutos. Arduino the Documentary

Scratch: software libre para el desarrollo del pensamiento computacional

Scratch es un lenguaje de programación visual desarrollado por el grupo Lifelong Kindergarten del MIT Media Lab. Scratch es un software libre. Esto significa que está disponible gratuitamente para todos y que se distribuye bajo una licencia de software libre, la Licencia Pública General de Massachusetts (MIT License). Esta licencia permite a los usuarios utilizar, modificar y distribuir el software de manera libre, siempre y cuando se respeten ciertas condiciones. Entre otras cosas, la licencia de Scratch permite a los usuarios utilizar el software para cualquier propósito, incluyendo fines comerciales. También permite modificar el software y distribuir las modificaciones, siempre y cuando se incluya una copia de la licencia y se indique que el software ha sido modificado. En resumen, Scratch es un software libre que permite a los usuarios utilizar, modificar y distribuir el software de manera libre y gratuita, siempre y cuando se respeten las condiciones de la licencia. De hecho, gracias a que está licenciado de esta forma, han surgido decenas de variaciones de Scratch para todo tipos de propósitos, eso sí, siempre educativos y relacionados con las enseñanzas de programación y robótica

3. BBC micro:bit y la Teoría del Cambio

BBC micro:bit, a veces escrito como Microbit o Micro Bit, es un pequeño ordenador del tamaño de media tarjeta de crédito, creado en 2015 por la BBC con el fin de promover el desarrollo de la robótica y el pensamiento computacional entre la población escolar del Reino Unido. Actualmente su uso está extendido entre 25 millones de escolares de 7 a 16 años de más de 60 países.

e74cc3a97963070daee67213f9ccf5268388bd01-790x635.webpTarjeta BBC micro:bit V1. Fuente: https://microbit.org. CC BY-SA 4.0.

Aunque el proyecto fue iniciado por la BBC, su desarrollo fue llevado a cabo por 29 socios tecnológicos de primera línea. Por ejemplo, la implementación del Bluetooth integrado en la tarjeta corrió a cargo de la fundación propietaria de la marca, Bluetooth SIG, una asociación privada sin ánimo de lucro.

El hardware y el software resultantes son 100% abiertos, y están gestionados por una fundación sin ánimo de lucro que comenzó a funcionar en el año 2016, la Micro:bit Educational Foundation. La fundación basa sus actuaciones en su Teoría del Cambio,

Teoría del cambio y más sobre microbit

Teoría del cambio puede resumirse en tres principios:

Para desarrollar sus principios, la fundación trabaja en tres líneas de acción:

Uno de los objetivos de la Micro:bit Educational Foundation es llegar a 100 millones de escolares en todo el mundo.

En correspondencia con las líneas de acción y con los principios expuestos, el sistema resultante es muy económico: tanto las placas como los accesorios producidos por terceras empresas tienen un precio muy contenido. Además, dado el carácter abierto del proyecto, están disponibles algunos clones totalmente compatibles, como Elecrow Mbits o bpi:bit. Estos clones son incluso más potentes y económicos que la placa original.

El universo micro:bit destaca por su alta integración de software y hardware: basta un clic de ratón para cargar las librerías necesarias para que funcione cualquier complemento robótico, como sensores, pantallas, tarjetas de Internet de las Cosas, robots, casas domóticas, etc.

La programación de la placa se realiza desde un ordenador a través de un navegador cualquiera, estando disponibles 12 lenguajes de programación. De nuevo, por ser un sistema abierto, existen múltiples soluciones de programación, aunque las más común es MakeCode.

MakeCode.pngCaptura de pantalla del editor MakeCode, https://makecode.microbit.org/#.

El sitio web MakeCode permite programar con bloques y también en Python y en Java, traduciendo de un lenguaje a otro instantáneamente. No se necesita ningún registro en la plataforma para poder programar.

Los programas también pueden guardarse descargados en el ordenador compilados en código de máquina. Al subir de nuevo el programa al editor, se realiza una decompilación automática al lenguaje de bloques, Python o Java. Los programas guardados en código de máquina se pueden cargar directamente en micro:bit, que en el escritorio de un ordenador se maneja como una simple unidad de memoria USB.

MakeCode contiene además múltiples recursos como tutoriales, vídeos, fichas de programación, cursos para el profesorado, ejemplos y propuestas de proyectos y experimentos, todo ello en varios idiomas y clasificado por edades desde los 7 años.

Otra solución muy usada para programar micro:bit es MicroPython, creada por Python Software Foundation, otra organización sin ánimo de lucro.

MicroCode permite que los más pequeños, a partir de los 6 años de edad, programen micro:bit mediante un sistema de fichas dispuestas en líneas de acción. Están disponibles un tutorial introductorio en 20 idiomas, una guía del usuario y muchos ejemplos. El proyecto es de código abierto.

Micro:bit también es programable en Scratch con sólo añadir una extensión al editor.

Todos los entornos de desarrollo descritos disponen de un simulador de micro:bit, por lo que ni siquiera resulta necesario disponer de una tarjeta física para aprender a programar.

Una vez realizada la programación, la placa y sus complementos pueden funcionar desconectados del ordenador por medio de un cargador de móvil, una batería externa o un simple par de pilas alcalinas.

Versiones y características de micro:bit

A pesar de su pequeño tamaño, micro:bit es un sistema potente. Existen dos versiones de la placa. La más moderna, llamada micro:bit V2, tiene las siguientes características:

4.- LA IMPORTANCIA DEL OPEN SOURCE / CÓDIGO ABIERTO EN EDUCACIÓN

La creación, distribución, modificación y redistribución del hardware y software libre así como su utilización, están asociados a una serie de valores que deberían ser explicados en la escuela a nuestros alumnos para dar una alternativa a la versión mercantilista de que cualquier creación es creada para obtener beneficios económicos.

En GNU, pusieron especial énfasis en la difusión del software libre en colegios y universidades, promoviendo una serie de valores fundacionales:

Valores GNU
 Compartir

   El código fuente y los métodos del hardware y software libre son parte del conocimiento humano. Al contrario, el hardware software privativo es conocimiento secreto y restringido. El código abierto no es simplemente un asunto técnico, es un asunto ético, social y político. Es una cuestión de derechos humanos que la personas usuarias deben tener. La libertad y la cooperación son valores esenciales del código abierto. El sistema GNU pone en práctica estos valores y el principio del compartir, pues compartir es bueno y útil para el progreso de la humanidad. Las escuelas deben enseñar el valor de compartir dando ejemplo. El hardware y software libre favorece la educación pues permite compartir conocimientos y herramientas.

Responsabilidad social

     La informática, electrónica, robótica... han pasado a ser una parte esencial de la vida diaria. La tecnología digital está transformando la sociedad muy rápidamente y las escuelas ejercen una influencia decisiva en el futuro de la sociedad. Su misión es preparar al alumnado para que participen en una sociedad digital libre, mediante la enseñanza de habilidades que les permitan tomar el control de sus propias vidas con facilidad. El hardware y el software no debería estar bajo el poder de un desarrollador  que toma decisiones unilaterales que nadie más puede cambiar.

Independencia

      Las escuelas tienen la responsabilidad ética de enseñar la fortaleza, no la dependencia de un único producto o de una poderosa empresa en particular. Además, al elegir hardware y software libre, la misma escuela gana independencia de cualquier interés comercial y evita permanecer cautiva de un único proveedor. Las licencias de hardware y software libre no expiran

Aprendizaje

        Con el open source los estudiantes tienen la libertad de examinar cómo funcionan los dispositivos y programas y aprender cómo adaptarlos si fuera necesario. Con el software libre se aprende también la ética del desarrollo de software y la práctica profesional.

Ahorro

        Esta es una ventaja obvia que percibirán inmediatamente muchos administradores de instituciones educativas, pero se trata de un beneficio marginal. El punto principal de este aspecto es que, por estar autorizadas a distribuir copias de los programas a bajo costo o gratuitamente, las escuelas pueden realmente ayudar a las familias que se encuentran en dificultad económica, con lo cual promueven la equidad y la igualdad de oportunidades de aprendizaje entre los estudiantes, y contribuyen de forma decisiva a ser una escuela inclusiva.

Calidad

        Estable, seguro y fácilmente instalable, el software libre ofrece una amplia gama de soluciones para la educación.

Para saber más

En los años 90, era realmente complicado utilizar un sistema operativo Linux y la mayoría de la cuota del mercado de los ordenadores personales estaba dominada por Windows. Encontrar drivers de Linux para el hardware que tenía tu equipo era casi una quimera dado que las principales compañías de hardware y de software no se molestaban en crear software para este sistema operativo, puesto que alimentaba la independencia de los usuarios con respecto a ellas mismas.

Afortunadamente, y gracias a la creciente presión de su comunidad de usuarios, estas situaciones pertenecen al pasado, y las compañías fabricantes de hardware han tenido que variar el rumbo. Hoy en día tenemos una gran cantidad de argumentos en los que nos podemos basar para dar el salto hacia cualquier sistema operativo basado en Linux. Tal y como podemos leer en educacionit.com, podemos encontrar las siguientes ventajas:

Por estas razones, el software libre se ha expandido por toda la comunidad educativa en los últimos años de manera exponencial. Un buen ejemplo de lo que estamos hablando es Bookstack, este sistema de edición de contenidos para cursos que utiliza Aularagón así como el uso de Moodle como plataforma de enseñanza y aprendizaje. En cuanto a sistema operativo para ordenadores, en Aragón disponemos de nuestra propia distribución Linux: Vitalinux EDU. Tal y como podemos leer desde su página web: Vitalinux EDU (DGA) es la distribución Linux elegida por el Gobierno de Aragón para los centros educativos. Está basada en Vitalinux, que se define como un proyecto para llevar el Software Libre a personas y organizaciones facilitando al máximo su instalación, uso y mantenimiento. En concreto Vitalinux EDU (DGA) es una distribución Ubuntu (Lubuntu) personalizada para Educación, "tuneada" por los requisitos y necesidades de los propios usuarios de los centros y adaptada de forma personalizada a cada centro y a la que se ha añadido una aplicación cliente Migasfree. De ésta forma, obtenemos:

  1. Un Sistema Ligero. Permite "revivir" equipos obsoletos y "volar" en equipos modernos. Esto garantiza la sostenibilidad de un sistema que no consume recursos de hardware innecesariamente ni obliga a la sustitución del hardware cada poco tiempo en esa espiral de obsolescencia programada en la que se ha convertido el mercado tecnológico.
  2. Facilidad en la instalación y el uso del sistema mediante programas personalizados.
  3. Un Sistema que se adapta al centro y/o a cada aula o espacio, y no un centro que se adapta a un Sistema Operativo.
  4. Gestión de equipo y del software de manera remota y desatendida mediante un servidor Migasfree.
  5. Inventario de todo el hardware y software del equipo de una forma muy cómoda.
  6. Soporte y apoyo de una comunidad que crea, comparte e innova constantemente.



Introducción

¿Qué es Arduino?

¿Qué es Arduino?

Arduino es una tarjeta electrónica que integra básicamente a un microcontrolador y un conjunto de pines de conexión de entradas y salidas que permiten, mediante un determinado programa, interaccionar con el medio físico mediante sensores y actuadores electrónicos. De esta forma podrás crear tus propios proyectos tecnológicos, dotarlos de sensores que detecten magnitudes físicas como luz, calor, fuerza, etc… y en base a esa información, escribiendo un programa, activar otros dispositivos (actuadores) como pequeñas bombillas, ledes, servomotores, pequeños motores DC, relés, etc… Los sensores se conectan a los pines de entrada y los actuadores a los de salida.

¿Sabías que.... ? Uno de los co-creadores de Arduino es Español, de Zaragoza: David Cuartielles +info

¿Qué es un microcontrolador?

Es un circuito integrado que se puede programar, o sea que puede ejecutar las órdenes que tenga almacenadas en su memoria. Tiene las tres funciones principales de un computador: la unidad central de proceso, memoria y entradas y salidas.

Arduino utiliza la marca ATMEL, y el modelo de microcontrolador depende del tipo de tarjeta, por ejemplo la tarjeta Arduino Uno utiliza el micro ATMEL MEGA 328P. Si quieres saber las entrañas de esta placa aquí

¿Qué se puede hacer con Arduino? ¿Algún ejemplo?

Realmente el límite lo marca tu imaginación pero por dar alguna pista, podrías diseñar un sistema para la apertura y cierre de la puerta de un garaje, hacer un robot móvil que detecte objetos o que siga una línea negra, crear un detector de luz y oscuridad, implementar un termómetro, controlar un cilindro neumático, etc…

En este manual tienes múltiples ejemplos de pequeños proyectos para el aula, aunque Arduino es una herramienta que también se utiliza en el ámbito profesional para monitorización de sensores y automatización a pequeña escala por su flexibilidad, fiabilidad y precio.

¿Qué son las entradas y salidas?

Mediante los conectores de Arduino correspondientes a las entradas y salidas podemos comunicar nuestros programas con el “mundo exterior”. Si queremos leer el valor de la magnitud física medida por un sensor, por ejemplo una LDR que detecta el nivel de luminosidad, lo tendremos que hacer conectando el sensor a uno de los pines de entrada (en este caso analógicas) de la tarjeta.

De esta forma con una simple instrucción de lectura en el programa, podremos obtener el valor de la magnitud física. Si nuestra intención es actuar o “hacer algo” una vez leído el valor del sensor, por ejemplo encender un led si el sensor de luminosidad detecta oscuridad, tendremos que conectar el actuador (en este caso el led) a un pin de salida que proporcionará la corriente necesaria para activarlo.

En Arduino las entradas pueden ser analógicas o digitales y las salidas sólo digitales. Cada pin digital tiene doble función entrada o salida. En la zona de configuración del programa hay que indicar explícitamente mediante una instrucción cuál es función desempeña un determinado pin.

¿Dónde se conectan los sensores? ¿A las entradas analógicas o digitales?

La mayoría de sensores miden señales analógicas y proporcionan una variación de voltaje dentro de un rango (normalmente de 0 a +5V) dependiendo de lo que varíe la magnitud física medida. Muchos sensores son resistivos a algo (luz, temperatura, humedad,…), es decir que varían su resistencia eléctrica con la magnitud física, pero mediante un sencillo montaje de divisor de tensión conseguimos una variación de voltaje apta para Arduino. Estos montajes los veremos en las prácticas.

Veamos este ejemplo:
El sensor LDR es una resistencia que cambia según la intensidad de la luz. La estrategia es colocar el LDR en un divisor de tensión con otra resistencia de valor parecido al promedio del que da el LDR (por ej 10k), y el valor del punto de unión proporciona una tensión entre 0 y 5V. Como es una señal analógica, la conectamos a una entrada analógica (en la figura al A6)

embedded-image-YfsLGvOe.jpegldrana.png

Una vez realizadas las conexiones, si midieramos la salida del sensor con un voltímetro nos daría un valor decimal, por ejemplo un nivel de luz “intermedio” (rango de 0 a 5V) de un sensor de luz podría dar 3,3 voltios. Este tipo de información el microcontrolador no la entiende tal cual, sólo es capaz de interpretar números binarios (“0” ó “1”) por lo que para traducir los valores analógicos dispone internamente de un conversor analógico – digital que hará la conversión entre los dos sistemas, de forma que podremos tener valores discretos de la medida de los sensores analógicos. En el Arduino las entradas analógicas leen valores analógicos entre 0V y la alimentación (normalmente 5V) y los convierten en números entre 0 y 1023 (porque lo codifica en 10 dígitos binarios proporcionan  210 = 1024 combinaciones).

Por ejemplo, si la entrada analógica lee un valor de 3,3V y la fuente de alimentación es 5V, la señal analógica que lee Arduino, haciendo una regla de 3, tiene un valor de 3,3 * 1023 / 5 = 675,18 = 675

Mapeo
Para convertir estos valores 0 -1023 a valores más legibles, por ejemplo 0 - 100 para representarlo en % o 0-5 para que represente la medida en voltios ... veremos en programación la función mapear

La mayoría de los sensores nos lo venden ya preparados montados en una pequeña placa electrónica y con circuitos integrados auxiliares para no tener que estar haciendo divisores de tensión. Pueden tener salida analógica o salida digital, que en este caso lo tenemos que conectar a cualquier entrada digital D0 hasta D13.

Veamos el mismo ejemplo del LDR: Podemos comprar este módulo:

ldrdig1.png

Estos módulos proporcionan 3 pines: dos que son la alimentación, (0V, GND o - )  y (+5V V+o Vcc) y el pin que proporciona la lectura (Vout o D0 o I/O). En el caso de que sea un sensor que mida una magnitud analógica como en este caso la luz, suelen proporcionar un potenciómetro para determinar qué luminosidad se considera un 0 o un 1.

¿Hay sensores digitales que no estén en una placa electrónica?

Las entradas digitales sin una placa electrónica son cuando las señales a leer son valores discretos. Por ejemplo queremos poner un pulsador o un interruptor que encienda un led. Hacemos un montaje que cuando se pulse, entren 5 voltios en el pin digital de entrada y cuando no se pulse que “entren” 0 voltios. De esta manera la lectura del pin digital de entrada será “HIGH” con 5 voltios o “LOW” con 0 voltios.

Veremos más adelante que un interruptor no es un simple cable que conectamos a +5V o a 0V pues ¿Qué valor lee Arduino mientras levantamos el cable de un sitio a otro?, para ello veremos configuraciones Pull-up o Pull-down que se repiten en muchos sensores.

¿Qué son las salidas digitales etiquetadas con PWM (~)?

Son salidas digitales que simulan una salida analógica. Las siglas significan Modulación por Ancho de Pulso (Pulse Width Modulation) es decir, proporcionan una onda cuadrada con un nivel alto (+5V) de “cierta” duración.

pinesPWM.png

Los valores PWM que podemos proporcionar pueden ir desde 0 a 255.

pwmsenal.png

De esta manera podemos simular señales analógicas, esto es muy útil para activar servomotores y llevarlos a una posición determinada o variar la luminosidad de un led o en los motores de los robots que vayan más deprisa o más despacio

¿Puedo accionar motores DC con Arduino?

Si son motores muy, muy pequeños sí sería posible aunque no es recomendable, pueden dañar la placa. Los motores necesitan un consumo alto de corriente, sobre todo si tienen que mover cierta carga, por lo que se recomienda o bien utilizar una tarjeta Shield o extensión de Arduino que dispone de circuitería apta para proporcionar dicha corriente (transistores).

Introducción

Hardware

Placa Arduino

Arduino puede tomar información del entorno a través de sus pines de entrada de toda una gama de sensores y puede afectar aquello que le rodea controlando luces, motores y otros actuadores. 

embedded-image-UBSH5GVW.png

Entradas y salidas

La placa Arduino UNO consta de:

La intensidad de corriente que pueden proporcionar como salida son 20mA.

Pines de la placa

Elementos con los que podemos interactuar: (tomando como ejemplo la placa USB). Empezando en el sentido de las agujas del reloj desde el centro de la parte superior:

Las placas: Arduino Diecimila, Arduino Duemilanove o UNO y Arduino Mega están basados en los microcontroladores Atmega168, Atmega 328 y Atmega1280 respectivamente. Trabajan a 16MHz, una velocidad suficiente para proyectos de robótica. Su capacidad de memoria Flash van desde 16k el Atmega168 hasta 128k Atmega1280, suficientes para que quepan nuestros programas de robótica.

SHIELDS para Arduino

Las llamadas Shields (escudos) para Arduino son tarjetas que se acoplan a la placa Arduino y añaden funciones y potencialidad a la placa Arduino.  Según mi criterio hay dos tipos de Shields: Las educativas y las no educativas

Shields educativas

Hay muchas Shields Educativas, vamos a ver unos pocos ejemplos

EDUBASICA-PEQ.png

tdrsteam.png

VISUALINO.png

Shields no educativas

Es difícil elegir unos ejemplos de toda la variedad comercial que existe y tanta vitalidad de versiones (ver lista), preferimos que en caso de que necesites alguna función extra a tu Arduino, busques en ese momento cual es la mejor Shield que se adapta a tu proyecto. Es importante que sepas que existen Shields para todo, por ejemplo para...

Y encima se pueden apilar !! consiguiendo aumentar la capacidad de tu Arduino tanto como necesites (sin pasarte, pues pues alimentación del Arduino es limitada al menos que la Shield tenga su propia alimentación.

via GIPHY

Alimentación eléctrica de Arduino

Uno de los aspectos claves para el buen funcionamiento de proyectos con Arduino, es que no incluyan elementos que consuman una intensidad superior a 200 mA como motores, relés, electroválvulas, etc.. Si los incluyen, entonces todo falla, debido a que no se ha alimentado correctamente la placa.

Tenemos dos posibilidades para alimentar Arduino:

A .- Mediante el cable USB conectado al ordenador:

Si conectamos demasiada carga, la placa Arduino suele tener un comportamiento anómalo pudiéndose resetear el micro.

B .- Utilizando una fuente de alimentación externa conectada al Jack de Arduino (fuente de voltaje, adaptador de corriente, batería o portapilas) :

C.- No recomendable: Conectando el positivo (+Vcc) de la fuente externa a Vin y el negativo a GND:

Podemos alimentar Arduino externamente si necesidad de conector Jack a través de Vin y GND el problema es que nos saltamos un diodo de protección que evita  que se queme el circuito por un exceso de corriente.

CONCLUSIÓN:

Si vas a utilizar elementos que requieran más de 800mA tienes que usar la alimentación externa del Jack y alimentar esos elementos por el pin Vin del Arduino.

Si esos elementos van a ser alimentados de forma independiente. ES IMPORTANTE UNIR LAS MASAS, En caso contrario, romperás la placa Arduino.

En este ejemplo se ha conectado el motor a una tensión externa (la pila) y la placa Arduino al USB fíjate como se han unido las masas
Opcionalmente se ha optado por unir el + de la pila con Vin. Eso equivale a conectar la pila al Jack. Esto hace que si quitamos la alimentación USB, la placa Arduino sigue alimentada.
Es recomendable unir la fuente externa (pila) al jack y no como se muestra, pues así tienes un diodo de protección que te protege la placa Arduino en el caso de que cambies la polaridad de la pila de forma accidental. ¿Porqué en este circuito no se ha hecho así? Porque en Tinkercad no he encontrado un Jack.

Introducción

Software

El microcontrolador en la placa Arduino se programa mediante dos opciones de programación:

OPCIÓN LENGUAJE POR CÓDIGO

Recomendable a partir de secundaria. Es un lenguaje basado en Wiring y permite la programación del Arduino en un entorno de desarrollo (basado en Processing). El programa se llama ARDUINO IDE y se puede descargar desde la página oficial de Arduino: https://www.arduino.cc/en/software.

Hay otra posibilidad que es utilizarlo online, con la ventaja de tener tus proyectos "en la nube" y no depender del equipo. OJO, TIENES QUE TENER INSTALADO EL SOFTWARE CREATE AGENT
https://create.arduino.cc/getting-started/plugin/welcome

arduinoide.png

En los cursos de CATEDU se ha utilizado el lenguaje por código empezando desde cero en:

Recomendamos estas hojas resumen si vas a trabajar con código:

OPCIÓN LENGUAJE GRÁFICO POR BLOQUES

Recomendado para primaria. Tenemos muchas posibilidades de lenguajes gráficos. Destacamos dos:

Otros softwares para programar con bloques

EN VIVO ¿Qué es eso?                                                                                                                                                       
Existe una posibilidad de utilizar la placa "en vivo" frente a "cargar" el programa en la placa.
Es decir, interactuando con el ordenador. El programa está en el PC. En la placa hay un firmware que le dice que este a las órdenes del PC.  De esta manera podemos por ejemplo:
     - Enviar órdenes desde el ordenador a la placa.
                      Por ejemplo que al pulsar la tecla espacio que se encienda el led D13 
    - Enviar información desde la placa al ordenador
                  Por ejemplo que muestre por pantalla nos muestre la cantidad de luz, que registra el sensor LDR, etc...
Que nosotros sepamos, estos programas permiten la programación en vivo :
               - mBlock placas: Arduino, Microbit, Raspberry Pi, ... robots de Makeblock: mBot, Cyberpi...
                -EchidnaScratch CURSO DE ECHIDNA

VENTAJAS LA PROGRAMACIÓN EN VIVO PERMITE MUCHO JUEGO Y POSIBILIDADES A LA HORA DE ELABORAR PROYECTOS
INCONVENIENTES: Necesitas el ordenador encendido y conectado al robot.

Hay otros softwares que técnicamente trabajan en vivo, es decir, que el programa se ejecuta desde el ordenador, no se ejecuta en la placa, son :
 - Microbloks https://microblocks.fun/  placas: Arduino, Microbit, ESP32, RaspberryPico, .... ver minitutorial
 -Snap4Arduino para placas Arduino
- Picobriks blocks para Picobrick board
Pero no permiten trabajar utilizando los elementos del ordenador como sensores y actuadores (teclado, webcam, pantalla, sprite o objetos,,,)

Es importante que entiendas que para trabajar en vivo, la placa tiene que tener cargado un "firmware" para que interactúe con el ordenador.

P: ¿Qué es eso de "firmware"?
R: No es más que un software que se graba en los chips de la placa.
P ¿Y por qué se llama así, y no se llama software o programa y en paz?
R: Digamos que como se graba en los chips, es un medio camino entre software y hardware, para diferenciarlo del software habitual.

EN CARGA ¿Qué es eso?                                                                                                                                                       
Simplemente el programa que estas haciendo se carga en la placa
VENTAJAS: Eres independiente del ordenador, tu robot funciona independiente
DESVENTAJAS Pierdes todas las posibilidades de utilizar los recursos de un ordenador, teclado, pantalla, webcam, altavoces...

Es importante que si cargas tu programa en la placa, pierdes lo que había antes
Es decir, si quieres volver a trabajar EN VIVO tienes que cargar el firmware correspondiente.

VENTAJAS E INCONVENIENTES 
LENGUAJE GRÁFICO POR BLOQUES vs CÓDIGO

El lenguaje gráfico por bloques es un lenguaje sencillo de utilizar, nos evita tener en cuenta muchas librerías y cálculos.

Otra ventaja, es que el lenguaje por bloques es el único que permite programación "en vivo"

Por ejemplo, la instrucción leer valor distancia el sensor ultrasonidos, mediante programación por bloques es 

leer-us.jpg

mientras que en código es

double distancia;

double fnc_ultrasonic_distance(int _t, int _e){
	unsigned long dur=0;
	digitalWrite(_t, LOW);
	delayMicroseconds(5);
	digitalWrite(_t, HIGH);
	delayMicroseconds(10);
	digitalWrite(_t, LOW);
	dur = pulseIn(_e, HIGH, 18000);  
    // devuelve cuanto tarda el pulso alto en microseg; 18000 es el tiempo a esperar limite
	if(dur==0)return 999.0;
	return (dur/57);
    // la velocidad del sonido es 344m/s = 34400 cm/seg = 0,0344 cm/microseg
   // como v=e/t luego e = v*t y como cuenta la ida y la vuelta distancia = v*t/2
   // luego distancia = 0,0344/2 * dur = dur/57 
}

void setup()
{
  	pinMode(6, OUTPUT);
	pinMode(5, INPUT);

}


void loop()
{

  	distancia = fnc_ultrasonic_distance(6,5);

}

Como se puede ver en código, tiene que calcular la distancia haciendo cálculos del tiempo de rebote del eco, mientras que el gráfico es sumamente sencillo y se centra en el objetivo del algoritmo a crear, no en lo accesorio. Esto hace que un lenguaje gráfico por bloques se puede aplicar desde los 8 años.

Por otra parte, el lenguaje código tiene todo el potencial, es decir, no todo está en los lenguajes gráficos. Si se quiere cosas más avanzadas, hay que recurrir al código.

Un lenguaje gráfico se convierte en lenguaje código, pero al revés no se puede, debido a que el código es más depurado y no tiene la información necesaria para volver a su origen en bloques, ya lo has visto con el anterior ejemplo, el código tiene más información.

¿No te lo crees? Haz la prueba, métete en https://www.tinkercad.com/ crea un programa con bloques, dale a la pestaña de código y te aparecerá una advertencia que perderás el programa con bloques ! no puedes volver atrás!

Curiosamente, tiene una opción bloques+código que traduce cada bloque con un código, es decir, traduce cada bloque sin perder información, sólo de esa manera se puede pasar de bloques a código y viceversa.

2024-09-23 10_51_49-Circuit design PIN0-CORE-CREW - Tinkercad.png

bloques-codigo.png
Imagen Federico Coca Notas sobre ESP32 STEAMakers CC-BY-SA

El lenguaje código se traduce en lenguaje máquina (ceros y unos) entendible para el microprocesador, pero al revés no se puede.

En este vídeo, en mi opinión se olvida de mBlock, Snap4Arduino, S4A pero puedes ver un vistazo de los diferentes editores

OPCIÓN SIMULACIÓN                                    

Incluimos dentro del apartado de Software los diferentes programas que hay para simular placas electrónicas como Arduino, ESP32, etc...

Tinkercad

Esta herramienta https://www.tinkercad.com aparece en el Curso Arduino con código  en la práctica Comunicación entre dos Arduinos, pero también es una plataforma que sirve para hacer los diseños de elementos 3D, ver curso Impresión 3D con Tinkercad

Tiene la ventaja que es aplicación online, muy visual y buscan un reflejo de la práctica real, además de estar la herramienta adaptada al aula (gestión de alumnos y proyectos). Como  desventajas podemos decir que no tiene mucha variedad de componentes electrónicos y la simulación es algo lenta.

Wokwi

Si Tinkercad se queda corto, puedes probar esta plataforma https://wokwi.com/ con muchas posibilidades. Es online y puede trabajar con multitud de placas: ArduinoUno, ESP32, Raspberry,,,,
Como única desventaja que encontramos, es que echamos de menos la realidad de Tinkercad, por ejemplo no puedes poner una placa protoboard para realizar las conexiones, pero a cambio se gana simplicidad de cableado.

2022-12-05 10_14_42-Knob.ino - Wokwi Arduino and ESP32 Simulator.png

UnoArduSim

Es una aplicación local.  UnoArduSim además es una aplicación portable fácil de instalar y con los elementos de leds, motores servos ya preparados, ideal para ejemplos sencillos y para examinar señales y no depender de Internet, pero no es tan versátil.

OPCIÓN SÓLO DIBUJAR


Introducción

Sensores

Esta sección es una visión rápida de las posibles entradas del Arduino y está adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Cualquier sistema de control podríamos decir que funciona de una manera similar a un ser humano, salvando las distancias. Nosotros recibimos la información del mundo exterior gracias a nuestros sentidos (oído, olfato, gusto, vista y tacto), nuestro cerebro procesa esa información y a través de nuestros músculos o de nuestra voz realizamos diferentes acciones. Pues lo mismo sucede con los sistemas de control, reciben información del exterior gracias a los diferentes SENSORES, procesan esa información en sus PLACAS CONTROLADORAS (sus cerebros) tales como Arduino y dan una respuesta utilizando sus diferentes ACTUADORES.

2022-04-13 19_23_12-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Un sensor es un objeto capaz de detectar magnitudes físicas o químicas y transformarlas en variables eléctricas. Los sensores o periféricos de entrada nos permiten obtener información del mundo real para utilizarla desde el programa de Arduino.

En la actualidad la cantidad de sensores disponibles es tan extensa como las variables que queramos medir, desde sensores de temperatura, humedad, luminosidad,... hasta acelerómetros, giroscopios, GPS,... pasando por detectores de gases, de pulsos cardiacos, sensores de efecto HALL,...

La interfaz de conexión de un sensor con Arduino lo podemos clasificar en tres tipos: DIGITAL, ANALÓGICO o DATOS.

Ejemplo: un pulsador es un tipo de sensor sencillo que sólo nos da dos estados, “pulsado o no pulsado”. Conectado a la placa Arduino debe generar 0v en reposo y 5v al pulsarlo. De esta forma desde el programa de Arduino podremos leer el estado del botón.

2022-04-13 19_25_30-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Ejemplo: Una fotorresistencia es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente. Su valor varía entre 0 y 5 v. la cantidad de valores que pueden leer las entradas analógicas de Ardunio son de 10 bits es decir 1024 valores. De tal modo que 0 = 0 v. y 1023 = 5V.

2022-04-13 19_26_06-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Ejemplo: el sensor DHT11 que mide temperatura y humedad.

2022-04-13 19_27_43-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensores modulares más comunes.

En  la  actualidad  existen  infinidad  de  sensores  que  los  fabricantes  presentan  en  forma modular.  Esto  hace  que  su  conexión  y  utilización  sea  mucho  más  sencilla  que  la  tradicional, olvidándonos de resistencias, polaridades, cableados,… para su correcto funcionamiento.

Sensor pulsador

Es un sensor digital, que presenta dos estados; cuando se presiona el botón,  emite  una  señal  de  bajo (0V), cuando suelta el botón, emite una señal de bajo alto (5V). Datasheet

Un ejemplo de uso

 2022-04-13 21_58_38-Modulo pulsador con tapa, 6uds.pngimage-1649922433118.png

Otra manera más "barata" de sustituir este módulo pulsador es poner un pulsador normal y una resistencia (±10k), al pulsar se produce una entrada en el Arduino, hay dos configuraciones, que al pulsar se emita un 0 lógico (configuración Pull up) o que al pulsar emita un 1 lógico (configuración Pull down) ¿Por qué hay que poner una resistencia?

image-1650097141548.pngimage-1650097157889.png

Lo "normal" es que al pulsar se emita un '1' configuración Pull down, pero hay pulsadores que funcionan al revés, lógica invertida o pull up, por eso en la programación por bloques podemos encontrar esto:

logicainvertida.png

Sensor Táctil Capacitivo. 

Este  pequeño  sensor  puede  "sentir"  a  las  personas  y  el  tacto  y  la retroalimentación de metales a un nivel de voltaje alto / bajo. Incluso aislado por alguna tela y papel, todavía puede sentir el tacto. Su sensibilidad disminuye a medida que la 
capa de aislamiento se hace más gruesa. En nuestra opinión lo preferimos frente al Sensor pulsador pues es muy económico, duradero y fiable.

Un ejemplo de uso en

2022-04-13 21_59_29-Interruptor táctil TTP223B.png

Potenciómetro y joystick

Un potenciómetro es una resistencia variable, es decir, cambia de valor mecánicamente, lo tenemos en multitud de dispositivos. El joystick es internamente dos potenciómetros con un pulsador integrado en un solo mando.

potenciometro-joystick.png2023-11-24 18_45_14-Quiero una – EchidnaShield.png

Este sensor es analógico, su salida puede ser cualquier valor entre Vcc y GND (si está en divisor de tensión como en la placa Edubásica no llega a esos valores extremos), por lo tanto hay que conectarlo a una entrada analógica de Arduino y como cualquier entrada analógica, proporcionará valores entre 0 y 1023.

Ejemplos de uso:

 Sensor Fotocélula LDR. 

El  uso  de  fotocélulas  es  muy  común  en  nuestras  vidas,  las  encontramos  en  el  encendido automático de  farolas, apertura de  puertas,…  La  fotocélula  es un  semiconductor. Es  ampliamente utilizado  en  campos  de  interruptores  de  control  automático  como cámaras,  luces  solares  de  jardín,  lámparas  de césped,  detectores  de  dinero,  relojes  de cuarzo, tazas de música, cajas de regalo, mini luces  nocturnas,  interruptores  de  control  de luz y sonido, etc.  
Es un sensor analógico dando valores entre 0 y 5V y como entrada analógica de un Arduino se traduce en un rango de 0 a 1023 valores. 
Un ejemplo de uso :

Una manera más económica de montar este sensor es utilizar una resistencia y un LDR:

embedded-image-YfsLGvOe.jpeg2022-04-14 08_04_14-3.5 Cableado sensores _ Librería CATEDU.png

Los módulos LDR que se venden suelen esta configuración Pull down, es decir, cuanto más luz,  más tensión:

image-1650370178627.png

La instrucción con Arduinoblocks ya cuenta con esta configuración Pull downUp de que cuando más luz, más valor tiene la entrada analógica.

2022-04-19 14_05_05-ArduinoBlocks.png

Hay módulos LDR ya montados,  que tienen componentes activos es decir, llevan circuitos electrónicos, transistores que amplifican etc... y dan la salida digital con un potenciómetro para definir el rango de luz que cambia de estado lógico. Puedes ver en la figura que tiene una salida digital D0.

sensorluzarduinodigital.jpg

O hay algunos que tienen 4 pines como en la figura que ofrecen las dos cosas: salida analógica A0 y digital D0.

sensorluzarduino.jpg

Nosotros aconsejamos el divisor de tensión por tres razones: más barato, no implica gran circuitería y es visible su funcionamiento frente a estos encapsulados.

Sensor llama

Este sensor de llama se puede utilizar para detectar fuego u otras luces cuya longitud de onda se encuentra entre 760 nm ~ 1100nm.

Un ejemplo de su uso:

2022-04-14 08_06_56-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png2022-04-14 08_07_38-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de Ultrasonidos.

Es un sensor digital de distancias por ultrasonidos capaz de detectar objetos y calcular la distancia a la que se encuentra en un rango de 2 a 350 cm. Su uso es tan sencillo como enviar el pulso de arranque y medir la anchura del pulso de retorno.

No es un sensor preciso, con una ligera inclinación de la superficie ya da lecturas erróneas pero es muy barato

Ejemplos de uso:

Pines de conexión:

Distancia = {(Tiempo entre Trig y el Echo) * (V.Sonido 340 m/s)}/2 por lo tanto en la programación tenemos que leer esos dos pulsos y calcular la distancia.

2022-04-14 08_10_43-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png2022-04-14 08_11_21-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor DHT11 (Temperatura y Humedad).

Este sensor de temperatura y humedad DHT11 tiene una salida de señal digital que funciona en un rango de temperaturas entre 0 y 50ºC con un error de ± 2ºC y un rango de humedad entre 20 y 90 % ± 5% . Tiene dentro un pequeño microprocesador que lanza por el bit de datos 40 bits en serie, los 16 primeros son la humedad y los 16 restantes es la temperatura los 8 restantes son de comprobación. Por ejemplo 0100 0111 0000 0011 0001 1001 0000 0000 0001 1000  es 0100 0111 0000 0011 = 47.03% de humedad y 0001 1001 0000 0000 = 19.00ºC y la comprobación es la suma de 4+7+0+3+1+9+0+0=24=11000

Ejemplos de uso:

2022-04-13 19_27_43-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

No es un sensor con gran sensibilidad, pero para propósitos educativos cumple sus funciones. Por dentro tiene una resistencia NTC que decrementa su resistencia si aumenta la temperatura. Hay otros que van al revés, los PTC. Tanto los NTC como los PTC se llaman thermistores. Para la humedad, mide la capacidad de un condensador que es sensible a la humedad, o sea, un sensor capacitivo.

Tenemos dos opciones comerciales: Encapsulado que lo tienes preparado para conectar la alimentación y leer por el pin de datos, o sin encapsular, que hay que colocar una resistencia de aproximadamente 10k entre Vcc y Data

dht11-pines.png

Ejemplo de uso de un DHT11 sin encapsular:

dht11sinencapsular.png
Fuente Luis LLamas CC-BY-NC-SA https://www.luisllamas.es/arduino-dht11-dht22/

Si queremos mejorar la sensibilidad, podemos utilizar el DHT22 que es igual pero de color blanco y más caro. Si lo que queremos es sólo la temperatura es mejor utilizar el LM35D que tiene un rango de temperaturas desde 0ºC a 100ºC con una sensibilidad de 2mV/ºC

lm35.jpg

Es un sensor bastante mediocre, si necesitas una precisión el doble, te recomendamos el DHT22 que funciona exáctamente igual pero es de color blanco y más caro ⁓3€. Ver https://www.luisllamas.es/arduino-dht11-dht22/

Sensor de humedad de suelo.

La función de este sensor es detectar la humedad del suelo. Si el suelo no tiene agua, el valor analógico emitido por el sensor disminuirá, de lo contrario, aumentará. Se puede utilizar este sensor para hacer un dispositivo de riego automático, puede detectar si las plantas “tienen sed” y evitar que se marchiten. El sensor se configura con dos sondas insertadas en el suelo, cuando la corriente atraviesa el suelo, el sensor obtendrá valor de resistencia al leer los cambios actuales entre las dos sondas y convertir dicho valor de resistencia en contenido de humedad. Cuanto mayor sea la humedad (menos resistencia), mayor será la conductividad del suelo. La corriente de trabajo del sensor es menor de 20mA. El voltaje de salida es de 0 a 2,3V (Cuando el sensor está totalmente sumergido en agua, el voltaje será 2,3V).

2022-04-14 08_15_34-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de humedad.

Este sensor analógico está diseñado para identificar y detectar la presencia de agua y su cantidad. Puede servir para detectar el nivel de agua, para disparar una alarma en caso de una fuga de agua, también para hacer un limpiapalabrisas automático.... puedes ver un ejemplo de uso en el curso de Domótica con Arduino

Mide el volumen de agua caída a través de una serie de rastros de cables paralelos expuestos.

2022-04-14 08_19_22-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de efecto Hall.

Este es un sensor de inducción magnética. Detecta los materiales magnéticos dentro de un rango de detección de hasta 3 cm. El  rango de detección y la fuerza del campo magnético son proporcionales. La salida es digital.

2022-04-14 10_07_05-1.3 Conexiones _ Librería CATEDU.png
Sensor Hall.                              Edwin Helber Hall De Desconocido - Popular Science Monthly Volume 64, Dominio público

Edwin Helbert Hall descubrió en 1879 que en presencia de un campo magnético, un conductor que conduzca una corriente se le producía un campo eléctrico porque las cargas eléctricas se desviaban de su trayectoria principal, nuestro sensor simplemente mide ese campo eléctrico:

De Luis Llamas CC-BY-NC

El sensor tiene un led de color rojo que indica que hay una lectura de campo magnético.

Un ejemplo de uso lo puedes ver aquí: medir rocas magnéticas con el Rover con Arduino

Sensor inclinación

Este sensor funciona al hacerle vibrar, emitiendo una señal digital de todo o nada. El módulo del sensor viene provisto de un potenciómetro para poder regularlo.

2022-04-14 11_01_13-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de golpe

Es un sensor digital que al ser golpeado este sensor envía una señal momentánea.

2022-04-14 11_02_09-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de pulso cardíaco.

Este módulo utiliza un LED infrarrojo (IR) ultrabrillante y un fototransistor para detectar el pulso en el dedo. Principio de funcionamiento: Se debe colocar el dedo entre el LED infrarrojo ultrabrillante (parte superior) mientras que el fototransistor, que queda en el otro lado, recoge la cantidad de luz transmitida. La resistencia del fototransistor variará levemente a medida que la sangre pase a través de su dedo.

2022-04-14 11_03_47-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de Alcohol.

Este sensor de gas analógico MQ-3 es adecuado para detectar alcohol. Se puede usar en un analizador de aliento. También tiene una alta sensibilidad al alcohol y baja sensibilidad a la bencina (éter de petróleo). La sensibilidad se puede ajustar con el potenciómetro.

2022-04-14 11_04_42-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Sensor de CO2

Hay sensores que utilizan el protocolo I2C, este protocolo permite conexiones serie y pueden compartir el mismo cable pues cada elemento tiene una dirección diferente. Esto lo veremos en el Display LCD. Se identifican por los pinen SDA y SCL

CCS811-KEYSTUDUUDIO.png


Sensor de Gas (MQ2).

Este sensor analógico de gas MQ-2 se utiliza en equipos de detección de fugas de gas en electrónica de consumo y mercados industriales. Este sensor es adecuado para detectar GLP, I-butano, propano, metano, alcohol, hidrógeno y humo. Tiene alta sensibilidad y respuesta rápida. La sensibilidad se puede ajustar girando el potenciómetro.

2022-04-14 11_05_36-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Esta sección está adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Resistencia Flex

Es una resistencia que cuanto más se dobla más resistencia ofrece, desde 25k hasta 125k

Datasheet Sparkfun

Para utilizar esta resistencia haremos un DIVISOR DE TENSIÓN que consistirá en poner dos resistencias en serie y repartirá la tensión total entre 0V y 5V en las dos resistencias, el punto medio será un punto que tendrá una tensión variable en función de las dos resistencias, como la es variable, esa tensión es variable y ya tenemos la entrada analógica:

Es decir:

Este sensor tiene posibilidades para usarlo en "ropa inteligente".

Sensor de movimiento con Microondas

Tradicionalmente se utilizan sensores PIR de infrarrojos para detectar el movimiento, pero personalmente veo que tienen falsos positivos y negativos, si quieres utilizarlos, te recomendamos esta página de Luis LLamas 

2022-04-16 10_24_22-sensor pir arduino at DuckDuckGo.png

Personalmente prefiero los sensores de microondas. Son un radar que por efecto Doppler pueden captar cualquier objeto en movimiento dentro de un alcance de 5-7 metros en cualquier dirección e independiente de su temperatura. Es un buen sensor para alarmas, activación de luz por presencia.... Curiosamente, su gran ventaja técnica es un gran inconveniente para usarlo en el aula, con cualquier movimiento se dispara. Para saber más ver la página de Luis Llamas

image-1650097316026.png

Su conexión es muy sencilla, es un detector digital que hay que alimentarlo como el resto de sensores.

image-1650097889205.png

Esta sección es una visión rápida de las posibles entradas del Arduino y está adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Introducción

Actuadores y otras salidas

Esta página es un repaso rápido de las posibles salidas del Arduino

¿Qué es un actuador?

Un actuador es el nombre genérico que empleamos para cualquier dispositivo capaz de realizar acciones en el mundo físico y que podremos controlar desde un autómata o procesador como Arduino. En particular, usamos el nombre actuador para los dispositivos que son capaces de generar movimiento.   Luis LLamas CC-BY-NC-SA

ACTUADORES                                                                                                   

Motores

Con el Arduino podemos usar motores de corriente continua de juguete como en la figura, aptos para poner un ventilador y afines por su alta velocidad de rotación, pero lo normal en la robótica con Arduino es utilizar motores con reductoras para bajar las revoluciones como el motor amarillo :

2022-04-16 10_40_41-motor arduino at DuckDuckGo.png

Si quieres usar un motor, no se puede conectar directamente al Arduino (al menos de que sea de muy baja potencia) necesita una alimentación extra, como el LM298N y las pilas., o el B6612FNG o una shield específica.

CC-BY-NC Luis Llamas

Ejemplos de uso lo puedes ver en 

Los motores pueden (y deben) de estar conectados a salidas PWM de tal manera que se pueda regular la potencia y por lo tanto la velocidad.

Servos

Un servo convencional es un motor donde fijamos el ángulo desde 0º a 180º, pero si queremos una rotación, existen servos rotatorios que simplemente tienen su velocidad de rotación controlada

Ejemplos de uso de servos:

Electroimán

El electroimán no se puede conectar directamente, utilizaremos una etapa de potencia, por ejemplo el transistor el IRF520N que amplifique la señal del Arduino, pues las salidas de Arduino no tienen potencia para mover el electroimán

Para dar esa potencia utilizaremos otra fuente externa, unas pilas:

image-1649970623453.png

Las conexiones son :

image-1649970676310.png

Motor paso a paso

Igual que el electroimán, necesitamos un controlador que nos de la potencia necesaria para mover el motor, el ULN2003

Imagen BY-NC-SA de Luis Llamas

También igual que el electroimán, necesitamos una potencia extra con las pilas:

Conexión :

La configuración más sencilla es la rotación simple en sentido horario (llamada fase1) :

Imagen BY-NC-SA de Luis Llamas

Es decir:

Paso IN1=D10 IN2=D11 IN3=D12 IN4=D13
Paso 1 ON OFF OFF OFF
Paso 2 OFF ON OFF OFF
Paso 3 OFF OFF ON OFF
Paso 4 OFF OFF OFF ON

Si has entendido este ejemplo serás capaz de realizar las configuraciones que desees.

OTRAS SALIDAS                                                                                              

No son actuadores pues no representan movimiento pero son también salidas del Arduino como los actuadores, luego lo vemos en esta página

Buzzer activo

Reproduce un tono de una frecuencia determinada por el fabricante cuando recibe un '1' digital. Su conexión es muy simple:

Ejemplos de uso:

Buzzer pasivo

La diferencia de un buzzer activo con el pasivo es que el pasivo hay que mandar la onda que se tiene que reproducir, como Arduino no puede reproducir onda puras (senoidales analógicas), se le envía ondas cuadradas con la frecuencia que se pretende reproducir. Como se puede ver en la figura, no tiene elementos auxiliares para reproducir un tono, es simplemente un altavoz.

zumbadorpasivo.png

Ejemplos de uso

Leds y otros elementos visualizadores                                                    

Led normal

Un diodo es la unión de dos semiconductores P-N que sólo permite la corriente en un sentido. Un diodo LED es un diodo, que al pasar esta corriente emite una luz. Hay de 3mm y de 5mm de grosor, transparentes, traslúcidos y de colores (realmente son traslúcidos tintados)

Tenemos pues que respetar su polaridad para que funcione:

arduino-led-patillaje.png

Fuente Luis LLamas CC-BY-NC Encender LED con Arduino

Si alimentamos el LED con una tensión inferior a su tensión de polarización directa Vd ±1,4V-3,8V el led no luce. si alimentamos con una tensión superior, la corriente que circula se dispara por lo que se rompe. Conclusión: Hay que poner una resistencia limitante. Para calcularla te recomiendo la página de Luis Llamas  Encender LED con Arduino

Aquí puedes ver un ejemplo de semáforo en el curso Arduino con código

image-1650005625137.pngimage-1650005638493.png

Se puede conectar directamente pues las salidas de Arduino tienen una limitación interna de 20mA como en este ejemplo https://www.youtube.com/watch?v=EFFSLvIF9rY

Los LEDS igual que los motores pueden se encendidos o todo o nada con salidas digitales 0 y 1 o salidas PWM de esta manera conseguimos luminosidades medias, en esta práctica con el potenciómetro se regula la intensidad de la luz de un LED

Led RGB

Se trata de un encapsulado que integra 3 leds de los tres colores básicos. Cada color básico se puede regular desde 0 a 255 de intensidad, luego tenemos 16 millones de tonalidades diferentes.

image-1650007895867.png

Un ejemplo de su uso lo puedes ver en

Existen LEDS RGB que se comunican unos a otros, (ver este ejemplo en el curso mClon) como las tiras de leds RGB que cambian de color todos simultáneamente.

Neopixel

La cinta LED RGB se basa en el chip controlador WS2812B de Neopixel con el cual podemos tener el control de cada pixel y de cada color, ya sea rojo, verde y azul a través de un solo cable de datos. 

Ver esta página de Luis LLamas Conectar Arduino con tiras led

    zoomNeopixel.jpg

Láser

El diodo láser es un elemento motivador, barato y fácil de usar con el Arduino pues se activa digitalmente, si enviamos un 1 emite un rayo láser. Un ejemplo de uso lo puedes ver en la Alarma por láser en Domótica con Arduino

Si quieres saber más de este componente, te recomendamos esta página de Luis Llamas.

Si tienes que comprar uno, es importante que no sea superior a 5mW, pues puede dañar permanentemente la retina del ojo [+info].
El modelo que proponemos es de 1mW, no obstante, EVITA SIEMPRE QUE EL LÁSER APUNTE A LOS OJOS especialmente con niños.

image-1649971311304.png

Display LCD

Si queremos visualizar datos de forma independiente del ordenador, existen matrices de led que puedes ver en los cursos de mBot o mClon pero lo mejor es una pantalla Liquid Crystal Display y la mejor forma de conectar esta interfaz es en serie (utilizando el protocolo I2C.)

Ejemplo de uso :

image-1650096059762.png

CC-BY-SA Luis Llamas

No confundas Display LCD con matriz de LEDs , o una OLED

Aclarando conceptos: Lógica invertida                                                                                   

Igual que vimos en sensores, con las configuraciones Pull up y Pull down, las salidas de cualquier actuador PUEDEN SER LÓGICA INVERTIDA, mira en este NodeMCU (básicamente es un Arduino con wifi, aquí está conectado con el servidor Blynk) como funciona al revés, cuando apretamos, por lo tanto enviamos un uno a la salida, se apaga la salida !!

Introducción

¿Qué es Arduino Blocks?

Esto no pretende ser un tutorial exhaustivo de ARDUINOBLOCKS, sino una guía rápida.
ARDUINOBLOCKS es un programa que tiene muchas posibilidades. Si quieres saber más sobre ARDUINOBLOCKS tutoriales, ejemplos, foro.... te recomendamos http://arduinoblocks.didactronica.com/ o el libro Arduino blocks - libros y tutoriales

¿Por qué una programación con bloques?

Arduino se programa en lenguaje C++ (con algunas variaciones  para  simplificarlo).  Para  programar normalmente  se  utiliza  el  IDE  (“Integrated  Development Environment"/"Entorno  de  Desarrollo  Integrado")  de Arduino,  que  permite  escribir  el  código,  compilar  el programa  (crear  el  programa  binario  para  el  procesador Arduino) y grabarlo en la placa Arduino a través del puerto USB.  El  IDE  de  Arduino  se  puede  descargar  desde  la  web oficial.  Es totalmente libre (José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

2022-04-13 12_45_21-PROYECTO 00 CONOCEMOS ARDUINO. - PDF-XChange Viewer.png 
(José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

Sin embargo pensando en edades más tempranas se han desarrollado formas más sencillas e intuitivas de programar Arduino como son los lenguajes de programación por bloques. De todos estos lenguajes cabe destacar ARDUINOBLOCKS

Gracias a este lenguaje visual podemos programar las placas Arduino sin necesidad de escribir ni una sola línea de código, de esta forma podemos empezar a realizar proyectos con Arduino de una forma muy rápida y a edades más tempranas.  La única desventaja es que el lenguaje por código tiene todo el potencial que requiere la programación de un experto.

Mismo programa creado con el IDE de Arduino en C++ (imagen de la izquierda) y con Arduinoblocks (imagen de la derecha).
  (José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

2022-04-13 12_47_24-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

  (José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

  Para trabajar con Arduinoblocks debemos ir a su página web http://www.arduinoblocks.com/ desde cualquier navegador y para cualquier sistema operativo (Windows, Linux, Mac). (José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

ArduinoBlocks

Arduinoblocks  es  un  programa  creado  por  el  profesor  Juanjo  López.  Gracias  a  su  entorno gráfico  facilita  la  programación  de  placas  Arduino  a  todos  los  niveles.  Esta  herramienta  permite programar a personas sin conocimientos previos de programación, pero su versatilidad y potencia es tan grande que expertos programadores también pueden utilizarlo. (José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

De Juan José López Almendros CC-BY-SA

La programación  en ArduinoBlocks  se realiza  con bloques  al  estilo AppInventor  o Scratch, se puede utilizar a partir de 8 años.  No  tenemos  que  escribir  líneas  de  código  y  no  nos  permitirá  unir  bloques  incompatibles evitando  así  posibles  errores  de  sintaxis.  La  plataforma  ArduinoBlocks  genera,  compila  y  sube  el programa a la placa Arduino por medio de la conexión USB. Una vez subido el programa, la placa el Arduino no necesitará de la conexión al PC para funcionar pudiendo alimentarla con baterías o una fuente de alimentación para que funcione de forma autónoma.  

ArduinoBlocks actualmente funciona con todos los navegadores de última generación: Mozilla Firefox, Google Chrome, Opera, Safari,... 

(José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

Por otro lado, tal y como se describe en la Wiki de Vitalinux,  ArduinoBlocks funciona perfectamente con todos los sistemas operativos, pudiendo ser fácilmente instalable en equipos individuales y a nivel de centro dentro del soporte de Vitalinux.

Ayuda en Arduinoblocks

Además hay chat de Telegram con una comunidad de profesores y técnicos de la empresa que apoya Arduinoblocks donde puedes encontrar proyectos, enlaces interesantes y lo más importante:  Puedes preguntar tus dudas o problemas

https://t.me/innovadidactic_comunidad

logogrupotelegramarduinoblocks.jpg

 

Introducción

Crear cuenta

Registrándonos  como  usuarios  de  la  plataforma  ArduinoBlocks  podemos  aprovechar  todas estas posibilidades: 

Entramos en http://www.arduinoblocks.com/ e iniciamos sesión

Y rellenamos el formulario

Introducción

Cuentas alumnos

Tal y como dice el tutorial de Juanjo López :

Permite a un usuario registrado con email, crear y administrar nuevas cuentas de usuario dentro de una organización, centro educativo o institución.

Si lo quieres en papel, te recomendamos el tutorial de Juanjo López son 12 diapositivas muy bien explicados https://github.com/arduinoblocks/documentacion/blob/master/usuarios_gestionados.pdf

El contar con esta funcionalidad es especialmente interesante en el caso de alumnado menor de 14 años, de forma que no sea necesario ceder ningún tipo de datos de ellos, ni recabar consentimientos parentales para la utilización de la plataforma. En general por criterios de protección y privacidad de datos, siempre es preferible trabajar con aplicaciones que solo requieren registro por parte del profesorado.

Introducción

Arduino blocks connector

Espera !!! Aún no conectes tu placa (Arduino, ESP32, NodeMCU, KeyStudio TDR STEAM...)

PRIMER PASO Descargar e instalar ArduinoBlocks Connector

Para poder usar la herramienta Arduinoblocks tenemos que ejecutar antes Arduinoblocks conector. Lo descargamos de la misma página de ArduinoBlocks según el sistema operativo que usemos: Windows (W7 E INFERIORES NO FUNCIONA), Linux ....

Lo descargamos y lo instalamos.

En el caso de tener equipos Vitalinux, es fácilmente accesible e instalable desde la aplicación Vitalinux Play o si se desea una instalación masiva en el centro a través de su página de soporte:

image-1667329017653.png


SEGUNDO PASO: INSTALAR LOS DRIVERS

Si no hacemos estos pasos, cuando conectamos la placa, siempre sale en el COM1, le damos a subir y sale erro

En http://www.arduinoblocks.com/web/site/abconnector5 tenemos abajo ARDUINO SERIAL DRIVERS

RECOMENDAMOS EL PRIMER ENLACE Y EL TERCERO

2024-06-26 11_27_26-Coding with blocks ;).png

En el primero el instalador está en este enlace https://cdn.sparkfun.com/assets/learn_tutorials/7/4/CDM21228_Setup.exe

2024-06-26 11_28_55-How to Install FTDI Drivers - SparkFun Learn.png

El segundo sólo si quieres utilizar Arduinos no oficiales, de fabricantes chinos, que tiene el CH340g y hay que leerse la página, paciencia

El tercero es necesario el 2102 si utilizas el ESP32 el instalador esta en este enlace, es una carpeta comprimida, la descomprimes y está el ejecutable instalador https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip

2024-06-26 11_38_15-CP210x USB to UART Bridge VCP Drivers - Silicon Labs.png

COMPROBAR QUE DETECTA LA PLACA

Ahora conectamos la placa (Arduino, NodeMCU, KeyStudio TDR STEAM...) a nuestro ordenador, y observamos si lo detecta, en Windows entramos en Administrador de dispositivos:

administradordispositivos.png

Y vemos que en los puertos COM se ha detectado correctamente la placa:

puertos.png

En el caso de que no aparezca, es que no se han instalado correctamente los drivers de Arduino. Entonces vamos a la página oficial de Arduino y descargamos el programa ARDUINO IDEhttps://www.arduino.cc/en/software y lo instalamos. Al instalar este programa se instalan los drivers en nuestro ordenador. No hace falta ejecutarlo.

En el caso de equipos con sistema operativo Linux (como Vitalinux) el puerto serie tiene la forma /dev/XXXX

YA PUEDES EJECUTAR ARDUINOBLOCKS CONNECTOR

Ahora buscamos el programa ArduinoBlocks connector que hemos descargado e instalado en el primer paso y lo ejecutamos.

2024-06-26 12_36_52-AB-Connector v5.3.png

ATENCIÓN No podemos cerrar la ventana mientras utilizamos Arduinoblocks, la minimizamos simplemente.

En caso contrario, Arduinoblocks no se puede comunicar con nuestra placa Arduino, NodeMCU, KeyStudio, etc ....

YA PUEDES EJECUTAR ARDUINOBLOCKS

Entramos en la web ARDUINOBLOCKS http://www.arduinoblocks.com/ nos logueamos e iniciciamos un proyecto, Vemos que en el editor que aparece ya los puertos COM (si no te aparece, dale a la rueda actualizar)

Aparecen varios COM,  elegir el último que tiene que coincidir con el que has visto en el segundo paso, no necesariamente es el COM más alto.
Si se queda una ruleta de espera demasiado tiempo, entonces, actualizar la página o darle a actualizar el botón 1 de la figura :

arduinoblocks-com.jpg

Una vez elegido el COM ya puedes darle al botón amarillo SUBIR cuando has realizado tu proyecto pero antes de subir, por si acaso dale a guardar el proyecto que has realizado.

En el caso de equipos con Linux veremos algo así:

image-1667328938836.png

¿Tengo que hacer los cuatro pasos cada vez?
No, sólo la primera vez para asegurar los drivers del Arduino, las siguientes veces que te conectes lo único que tienes que hacer  es el tercer y cuarto paso

IMPORTANTE: TENER EL SOFTWARE ARDUINOBLOCKS ACTUALIZADO para que funcionen los nuevos bloques que se incorporan en Arudinoblocks

Introducción

Empezando un proyecto

Entramos en Proyectos y podemos ver nuestros proyectos creados como también empezar uno.

Y nos aparece tres opciones :

En esta ventana podremos elegir que tipo de proyecto vamos a realizar: 

Adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Lo primero que tenemos que elegir es para qué tipo de placa se hace el proyecto.

placa-a-elegir-arduinoblocks.png

ATENCIÓN luego NO se puede cambiar. Es decir, un proyecto realizado para un tipo de placa, no se puede cambiar a otro tipo de placa (la razón es simpe: las instrucciones cambian)

Luego el nombre y el resto de campos es optativo pero importante y buena costumbre rellenarlos, sobre todo si el proyecto lo compartimos:

Área de programación del proyecto

Este es el área sobre el que se trabaja en Arduinoblocks. En esta área arrastraremos y colocaremos los bloques que vamos a utilizar para crear nuestro programa.

En el área de trabajo hay un Zoom (2) para ampliar o reducir la imagen, un icono para centrar
(1) y un icono donde podremos borrar los bloques que no utilicemos (3).

2022-04-13 19_02_05-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Las principales secciones del área de programación son las siguientes :

2022-04-13 19_03_07-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Ver el código

ArduinoBlocks genera el código de Arduino a partir de los bloques. El programa se puede compilar y subir directamente a la placa Arduino gracias a la aplicación ArduinoBlocks-Connector, sin embargo si deseamos ver o descargar el código podemos realizarlo desde el área de bloques.

2022-04-13 19_05_37-PROYECTO 00 CONOCEMOS ARDUINO..pdf - Google Drive.png

Adaptado de este enlace. José Andrés Echevarría @cantabRobots CC-BY-NC-SA

Siempre, desde un lenguaje de programación en bloques podemos obtener su equivalente a Código de Arduino IDE (de hecho es lo que hacen los programas), y luego con las funciones de Código de Arduino IDE el software lo pasa a lenguaje máquina que es la que se graba el Arduino, pero no al revés es decir, no existen programas que dado un código máquina o código Arduino IDE lo pasen a bloques gráficos, (igual que no hay programas que lean el código máquina que hay grabado en un Arduino y lo pasen a código Arduino IDE). Esto no es del todo 100% verdadero pues la Ingeniería inversa en informática trata pues de eso: obtener la fuente aunque sea parcial, pues si obtienes el código legible, puedes alterar lo que quieras.
Cuando compras un programa comercial, te dan el lenguaje máquina ilegible. Mientras que los programas de software libre se publica el código fuente legible para que todo el mundo pueda mejorarlo.

Por ejemplo en la siguiente figura, el programa gráfico mBlock que se utiliza en Arduino, mBot, etc... pasa sus instrucciones de lenguaje de programación de bloques parecido a Scratch a lenguaje de Código de Arduino IDE y Arduino IDE graba instrucciones binarias de lenguaje máquina al Arduino.

embedded-image-j3gKXHlj.png

¡¡A disfrutar!! 
Consejo: Te recomendamos visitar el canal de Youtube de Arduinoblocks https://www.youtube.com/c/ArduinoBlocks

 

PRACTICAS PRINCIPIANTE

Son prácticas a nivel de primaria. Muy básicas en programación a nivel de control de la lógica si/sino y con una circuitería mínima para encender, apagar luces con un pulsador como sensor.

PRACTICAS PRINCIPIANTE

Encender un led

 Vamos a realizar un primer programa sencillo para empezar: encender un led. Como tenemos un led RGB vamos a encender sólo un color: El rojo

El esquema de conexiones es el siguiente :

2022-03-31 12_55_04-Untitled Sketch 2.fzz_ - Fritzing - [Vista de Protoboard (placa de Prototipos)].jpg

Quedaría pues así :

2022-03-31 12_58_38-WhatsApp.jpg

Y el programa en Arduino Blocks :

Dejamos de momento Pin G = 10 y Pin B= 11 en esta práctica es irrelevante, pero en la siguiente práctica lo utilizaremos 

2022-03-31 13_01_12-ArduinoBlocks.jpg

PRACTICAS PRINCIPIANTE

Intermitente RGB

Objetivo

Vamos ahora a utilizar los tres colores y de forma intermitente. Que se encienda primero el rojo, luego el verde y luego el azul y así indefinidamente, con un tiempo de 1 segundo de duración cada encendido.

Esquema

2022-03-31 13_14_55-ArduinoBasico1.fzz_ - Fritzing - [Vista de Protoboard (placa de Prototipos)].jpg

2022-03-31 13_06_11-WhatsApp.jpg

Programa

http://www.arduinoblocks.com/web/project/764523

2022-03-31 13_10_12-ArduinoBlocks.jpg

🤔 ¿Por qué se han conectado a las salidas 9,10 y 11 ?

…pista : ~

PRACTICAS PRINCIPIANTE

Pulsador luz

Objetivo

Montar el pulsador de luz, si se pulsa, que se encienda el RGB en todos sus colores

Esquema

A partir de ahora vamos a hacer dos líneas de +5V y GND superior e inferior en la placa Protoboard:

De esta manera simplificamos algo el cruce de cables y queda pues :

2022-03-31 13_51_08-ArduinoBasico3PulsadorLuz.fzz_ - Fritzing - [Vista de Protoboard (placa de Proto.jpg

Aconsejamos poner el pulsador táctil delante de los cables de esta manera queda libre el acceso para poder pulsarlo sin tener cables por en medio.

2022-03-31 13_52_20-WhatsApp.jpg

ATENCIÓN, a partir de ahora sólo señalaremos las nuevas conexiones para simplificar los esquemas

Esto quiere decir que para este ejemplo, sólo mostraremos la conexión del interruptor de luz:

2022-03-31 18_20_45-ArduinoBasico3PulsadorLuz.fzz_ - Fritzing - [Vista de Protoboard (placa de Proto.png

Las demás conexiones tienes que mantenerlas aunque no las dibujemos :
-  Conexión de la alimentación +5V y GND de las líneas azules y rojas superiores e inferiores
-  Conexión de los anteriores elementos (en la figura el RGB)

Programa

http://www.arduinoblocks.com/web/project/766370

2022-03-31 13_45_41-ArduinoBlocks.jpg

🤔¿Por qué se han conectado a las salidas 9,10 y 11 ?

 

…pista : ~ y el 255

PRACTICAS PRINCIPIANTE

Pistola láser


Objetivo

Es la misma práctica que la de pulsador con luz, pero en vez del LDR es el láser. No tienen ninguna dificultad, simplemente la motivación de la creación de una pistola láser.

Cableado

2022-04-09 17_52_00-ArduinoUnoDisparoLaser.fzz - Fritzing - [Vista de Protoboard (placa de Prototipo.png

2022-04-09 17_54_57-Clipboard.png

Programa

http://www.arduinoblocks.com/web/project/780595

arduinoblocks_1649519777018.png

PRACTICAS PRINCIPIANTE

Pulsador luz y timbre

Objetivo

Al tocar el pulsador, además de encenderse el RGB tiene que sonar una musiquilla ¿te suena la melodía?

Esquema

Añadimos el módulo zumbador, sin quitar los anteriores elementos ni cables, conectando el pin I/O a D3, y los correspondientes pines de Vcc y GND del módulo zumbador al +5V y GND del Protoboard.

2022-03-31 18_51_55-ArduinoBasico4PulsadorLuzZumbador.fzz_ - Fritzing - [Vista de Protoboard (placa .png

Programa

El esquema del programa está en http://www.arduinoblocks.com/web/project/766866

2022-04-01 21_18_23-ArduinoBlocks.png



PRACTICAS INTERMEDIO

Prácticas ya con sensores como el LDR, el sensor de distancia Ultrasonidos
Salidas con actuadores como el servo
Lectura de valores de los sensores por el puerto serie

PRACTICAS INTERMEDIO

Interruptor crepuscular

Objetivo

Realizar un interruptor crepuscular, es decir, cuando se oscurece, que se encienda la luz y que se apague cuando la luminosidad se recupere.


Cableado

Utilizaremos el LDR con un divisor de tensión de tal manera que al modificar el LDR su valor, la tensión que han entre las dos resistencias se modifica. El punto intermedio que lee la tensión lo conectaremos a una entrada analógica, al A0 por ejemplo.

ldrporA0.png


2022-04-09 18_58_03-ArduinoBasico4PulsadorLuzZumbadorAlarma.fzz_ - Fritzing.png

2022-04-09 18_59_19-Clipboard.png

Programa

http://www.arduinoblocks.com/web/project/780612

arduinoblocks_1649523671646.png


PRACTICAS INTERMEDIO

Barrera por ultrasonidos

Objetivo

Crear un programa que al detectar un objeto a menos de 10cm suba una "barrera" simulada con un servo y un trozo de papel (en el vídeo un "postit"

Cableado

ATENCIÓN Se han omitido las conexiones del led RGB y las del zumbador

2022-04-04 11_06_09-Window.jpg

Programa

El programa lo tienes aquí http://www.arduinoblocks.com/web/project/770872

arduinoblocks_1650695820893.png

Puedes mejorar el programa añadiendo un retardo en la bajada de la barrera, simulando el caso real, que cuando el coche pasa, hay un poco de retraso en el cierre de la barrera

También puedes añadir al programa que si se pulsa el pulsador táctil, que se suba la barrera, como pulsador de seguridad.

PRACTICAS INTERMEDIO

Comunicaciones

Arduino permite comunicarse con periféricos o con el PC de diferentes formas:

 La conexión serie de Arduino está accesible en los pines 0 (RX) y 1 (TX), internamente estos pines están conectados al chip que gestiona el USB, en caso de usar la comunicación serie con otros dispositivos conectados a los pines 0 y 1 se deberá desconectar el USB para evitar que se mezclen los datos y no funcione la comunicación.  

(adaptado de José Andrés Echevarría @cantabRobots CC-BY-NC-SA)

El Puerto serie COM lo utilizaremos como comunicaciones entre ordenador y las placas, aunque aquí puedes ver un ejemplo sencillo de comunicación entre dos Arduinos utilizando los pines 0-RX y 1-TX

El I2C se utiliza principalmente en la conexión con la pantalla I2C:

2022-04-13 13_33_04-PROYECTO 00 CONOCEMOS ARDUINO._ - PDF-XChange Viewer.png
(José Andrés Echevarría @cantabRobots CC-BY-NC-SA)
lcd-arduino.png

Ejemplo de conexión de LCD con ARDUINO UNO para ver cómo se programa con código aquí 



PRACTICAS INTERMEDIO

Lectura puerto serie ultrasonidos

Objetivo

Vamos a visualizar por el puerto serie el valor del sensor de Ultrasonidos con el objetivo de aprender sobre las comunicaciones del Arduino y el ordenador y sus posibilidades de recogida de datos

La gráfica que obtendremos al pinchar en el serial plotter de arriba a la derecha será algo así, moviendo un obstáculo delante del sensor :

2022-04-10 10_25_24-Clipboard.png

Arriba a la derecha tiene las opciones de exportar los datos a una hoja de cálculo. También se puede visualizar de forma textual en la consola serie

2022-04-10 10_31_05-ArduinoBlocks.png

Cableado

Simplemente conectar el sensor que se quiere examinar. Trigger en D6 y Echo e D5 por ejemplo:

2022-04-10 10_28_20-ArduinoBasico4PulsadorLuzZumbador-Barrera.fzz_ - Fritzing.png

2022-04-10 10_32_13-WhatsApp.png

Programa

http://www.arduinoblocks.com/web/project/780686

arduinoblocks_1649579610677.png

¿Podrías hacer lo mismo con la lectura de la luz del sensor LDR ?

PRACTICAS AVANZADO

- Utilización de varios sensores y activadores a la vez
- Programación en funciones y uso de variables
- Continuación de lectura de sensores por el puesto serie

PRACTICAS AVANZADO

Alarma láser

Objetivo

Realizaremos una alarma laser con las siguientes condiciones:

Cableado

Tenemos que ser cuidadosos de apuntar el láser (representado en esta figura por un led) al LDR, en caso contrario el Arduino se disparará de inmediato al cargar el programa.

2022-04-07 13_53_59-ArduinoBasico4PulsadorLuzZumbadorAlarma.fzz - Fritzing - [Vista de Protoboard (p.jpg

Programa

Se aconseja el uso de funciones y variables para simplificar la programación :

OJO si se dispara la alarma, pon más retardo de 500ms

http://www.arduinoblocks.com/web/project/772739

arduinoblocks_1649331839040.png

Mejora esta alarma añadiendo otro sensor, el sensor de Ultrasonidos, si detecta un objeto cercano que se dispare la alarma.

Otra mejora:: Añade un retardo al disparo de la alarma al activar uno de los sensores, por ejemplo el láser. Igual que en los casos reales, el sensor de la puerta principal tiene retardo para que el "dueño" tenga un tiempo para desactivar la alarma antes de que se dispare. El otro sensor (el de ultrasonidos) no tendría retardo, estaría por ejemplo en una habitación por lo tanto no tiene que tener retardo, el dueño nunca entra a la casa por ahí.

PRACTICAS AVANZADO

Piano con teclado invisible

Objetivo

Vamos a tocar diferentes notas según la distancia que mida el sensor de ultrasonidos.. Cuanto más cerca, más agudo.

Cableado

Conectaremos el sensor de ultrasonidos y el zumbador tal y como lo hemos hecho en anteriores prácticas.

2022-04-09 19_56_57-ArduinoBasico4PulsadorLuzZumbador-Barrera.fzz_ - Fritzing.png

2022-04-09 19_58_36-WhatsApp.png

Programa

http://www.arduinoblocks.com/web/project/780618

arduinoblocks_1649526757603.png

PRACTICAS AVANZADO

Aparca coches

Objetivo

Simular el sensor asistente de aparcamiento que mediante una señal acústica nos avisa de la cercanía de un obstáculo.

Es parecido a la práctica anterior, pero aquí el tono es el mismo. Lo que cambia es la frecuencia de los pulsos

Cableado

Es igual que en la práctica anterior

2022-04-09 19_56_57-ArduinoBasico4PulsadorLuzZumbador-Barrera.fzz_ - Fritzing.png

2022-04-09 19_58_36-WhatsApp.png

Programa

http://www.arduinoblocks.com/web/project/780629

arduinoblocks_1649531448551.png

PRACTICAS AVANZADO

Estación meteorológica

Objetivo

Igual que en la práctica de lectura de puertos podemos visualizar los datos de sensores ambientales :

Podemos ver las variaciones lanzando vaho en el sensor y tapando el LDR.


2022-04-10 14_34_51-ArduinoBlocks.png

Cableado

Vamos a practicar la lectura de sensor DHT11 que es sencillo de utilizar pues como todos, tiene dos pines de alimentación y un pin de lectura, el otro pin, el penúltimo no se conecta :

Ojo, para que funcione correctamente hay que poner una resistencia entre el pin de datos y el de alimentación

conextiondht11ldrarduino.jpg

conextiondht11ldrarduinofoto.jpg

Programa

http://www.arduinoblocks.com/web/project/780757

arduinoblocks_1649602201589.png


Créditos

Autoría

Cualquier observación o detección de error en soporte.catedu.es

Los contenidos se distribuyen bajo licencia Creative Commons tipo BY-NC-SA excepto en los párrafos que se indique lo contrario.

image-1648462225402.gif

image-1648462299882.png

image-1648462361893.png