Unidad 1.1. Panorama general de la IA

Attention is All You Need

2017 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser y Illia Polosukhin

Equipo de investigación de Google

 

CONTENIDOS

Introducción

image.png

La cita inicial da título al artículo que en 2017 supuso el nacimiento de todo el boom de aplicaciones y sistemas de IA que hoy en día inundan las redes y tanto impacto están teniendo en todos los sectores económicos y sociales.

Presentó la arquitectura de red neuronal conocida como "Transformer", la cual se ha convertido en la base para muchos desarrollos posteriores en el campo del procesamiento del lenguaje natural (NLP) y, dentro del mismo, en la llamada IA Generativa, base de casi todas las aplicaciones de IA que veremos en el curso.

Es, además, una sentencia muy relacionada con la educación, pues sintetiza y expresa la premisa más importante para cualquier alumno que quiera aprender, a saber, la actitud o la atención hacia los temas de estudio. De manera que es perfecta para iniciar este curso en dos temas de gran impacto y relevancia social como son la IA y la educación.

La llamada IA ha irrumpido abruptamente en el mundo a todos los niveles. Desde que, en 2017 investigadores de Google publicaran el mencionado artículo 'Attention is all you need' el desarrollo y difusión de sistemas de procesamiento del lenguaje natural (NLP) ha sido imparable, liderado por la empresa OpenAI, pero también por otras como DeepMind o Anthropic y, por supuesto, Microsoft y el propio Google (Gemini).

Pero su desarrollo lleva mucho más tiempo, desde siempre el ser humano ha querido construir máquinas que imiten su inteligencia, empezando por dispositivos automáticos y continuando con sistemas de generación de lenguaje y en general el desarrollo de tecnologías procesamiento del lenguaje natural, subcampo de estudio dentro de la IA en general y, en particular, del  llamado Deep Learning o aprendizaje profundo.

Es un camino plagado de fracasos y euforia puntual que sólo recientemente ha culminado en una adopción masiva y un impacto relevante en todos los sectores económicos y sociales.

Finalmente y desde hace algo más de un año los sistemas de procesamiento de lenguaje natural (NLP) y la inteligencia artificial generativa han permitido llevar la IA a todos los ámbitos con éxito creciente. También la robótica y la propia biología (edición genéticao CRISPR, órganos sintétitcos, integración hombre-máquina) han experimentado un cambio sensible en sus posibilidades.

Todo esto hace que el campo de la IA por fin sea el más popular y aplicado en todo el mundo y en todas las empresas y organizaciones.

Los usos y aplicaciones son crecientes y se amplían a diario. También las amenazas están ahí en cuanto al mal uso y las implicaciones en cuanto a privacidad de la información y su utilización ilícita.

Sin embargo debemos asumir y asimilar su existencia y promover el uso ético y estético de estas tecnologías que, de manera inevitable, van a estar cada vez más presentes en nuestras vidas.

En este curso trataremos de dar una visión completa de todo el ecosistema de la IA abarcando la evolución histórica, los fundamentos que la sustentan y las principales aplicaciones, siempre haciendo especial hincapié en el lado educativo.

Pero no solo eso, también queremos tratar temas más avanzados y tratar el impacto socioeconómico de la IA así como las consideraciones éticas.

Aunque los veremos a lo largo del curso queremos introducir algunos conceptos importantes además de una relación de tecnologías y empresas más relevantes en el panorama actual

Conceptos de Inteligencia Artificial (IA)

Es conveniente adelantar algunos de los conceptos principales en el mundo de la Inteligencia Artificial, en adelante IA, para no olvidar de donde partimos y que es lo que denotamos por IA.

A continuación indicamos algunas definiciones aproximadas de los conceptos de inteligencia, artificial y el binomio IA

Definiciones que necesariamente son aproximadas al no haber, ni siquiera en la comunidad científica, un consenso sobre las mismas.

Inteligencia: Es la capacidad de entender, aprender, razonar, tomar decisiones y formar una idea determinada de la realidad.

Artificial: Se refiere a sistemas diseñados para imitar o replicar la inteligencia humana.

Inteligencia Artificial: 

La Inteligencia Artificial (IA) es un campo de la informática que se enfoca en la creación de sistemas capaces de realizar tareas que, hasta hace poco, requerían de la inteligencia humana. Esto incluye procesos como el aprendizaje (la adquisición de información y reglas para el uso de la información), el razonamiento (usar las reglas para alcanzar conclusiones aproximadas o definitivas) y la autocorrección. Las aplicaciones prácticas de la IA incluyen sistemas expertos, reconocimiento de voz, aprendizaje automático y robótica.

Tipos de IA:

Se habla continuamente de IA pero sin reparar en que existen varios tipos a nivel conceptual.

En lo que respecta a este curso siempre hablamos de Inteligencia Artificial en el sentido de imitar al cerebro o a la inteligencia humana. Sin embargo existen otros tipos que debemos considerar para futuros escenarios.

Tecnologías de IA:

A continuación indicamos algunas de las tecnologías más relevantes en el campo de la IA ya que son términos comunes en cualquier texto o referencia que podamos encontrar. La mayoría de ellas aparecerán de forma más o menos detallada a lo largo del curso. 

  1. Aprendizaje Automático (Machine Learning): Técnicas que permiten a las máquinas aprender de datos.

  2. Aprendizaje Profundo (Deep Learning): Uso de redes neuronales con múltiples capas para procesar grandes conjuntos de datos.

  3. Redes Neuronales Convolucionales (CNN): Especialmente diseñadas para el procesamiento de imágenes.

  4. Procesamiento del Lenguaje Natural (NLP): Tecnología que permite a las máquinas leer y comprender el lenguaje humano.

  5. Algoritmos de Reforzamiento (Reinforcement Learning): Donde los modelos aprenden a tomar decisiones basadas en recompensas.

  6. Visión por Computadora: Permite a las máquinas interpretar y tomar decisiones basadas en imágenes o video.

  7. Robótica Autónoma: Robots que pueden aprender y operar en su entorno sin intervención humana.

  8. Sistemas de Recomendación: Algoritmos que sugieren productos o contenidos a los usuarios.

  9. Redes Generativas Adversarias (GANs): Usadas para generar contenido, como imágenes, vídeo o texto, que es indistinguible del contenido creado por humanos.

  10. Reconocimiento de Voz: Tecnología que convierte la voz en texto y viceversa, permitiendo la interacción verbal con dispositivos.

  11. Mecanismos de Atención: Como el modelo "Transformer", que ha revolucionado el NLP con su enfoque "Attention is All You Need".

Principales empresas y productos de IA:

Dada su complejidad y alta demanda de recursos, solo grandes compañías han podido desarrollar y proporcionar servicios de IA al nivel actual. Las herramientas que usaremos en el curso pertenecen a dichas compañías, aunque no debemos olvidar que se distinguen productos 'open source' (de uso libre pero no necesariamente gratuito) de los comerciales (generados de forma opaca sin detalles sobre fuentes de datos o algoritmos implicados).

Entre los productos más importantes destacamos los siguientes:

Que duda cabe que existen cientos de otras compañías y herramientas que han desarrollado productos de IA, especialmente chatsbots, como Alexa de Amazon, Cortana de Microsoft o Siri de Apple, y que su uso es creciente, pero solo hace un año escaso se ha podido contar con herramientas de uso genérico que abarquen todo el conocimiento humano.

Dado que el curso se orienta al ámbito educativo adelantamos algunas plataformas de gran impacto que lo han abordado, algunas de las cuales ya se están implantando en diferentes países y centros educativos.

Sectores más afectados:

Dado su caracter transversal, la IA ha irrumpido con fuerza en todos los sectores y ámbitos de la sociedad destacando por su potencial impacto el sector educativo y tecnológico en general, pero también en el mundo industrial (robótica), artístico (diseño, generación de vídeo e imagen, generación de música etc...) y científico (generación de papers, optimización de algoritmos o generación de ideas)

A continuación describimos los más importantes


Revision #28
Created 2 October 2023 17:59:59 by Pedro López
Updated 21 March 2024 10:46:54 by Chefo Cariñena