Skip to main content

Unidad 1.3. Inicios y evolución de la IA.

Este apartado lo desgranaría un poco más, quizá separando los inviernos en secciones

El nacimiento de la IA

Texto en la placa conmemorativa de la conferencia de Dartmouth: "LasPrimera redesutilización neuronalesdel artificialestérmino son"Inteligencia Artificial". Fundando la Inteligencia Artificial como una formadisciplina de programarinvestigación para proceder sobre la computadorabase de la conjetura de que cada aspecto del aprendizaje o cualquier otra característica de la inteligencia puede, en principio, describirse tan precisamente que se puede construir una máquina para que aprenda a reconocer patrones y decisiones por sí misma, en lugar de tener que ser programada explícitamente para cada tarea."simularlo". - Geoff Hinton

A paritrpartir de los años 50 se produce una evolución explosiva de la IA aunque con altibajos, también llamados inviernos de IA.

 

          El resumen de tal proceso se presenta en esta imagen.

image.png

image.png

Desde la histórica conferencia de Dartmouth en 1956, que marcó el inicio formal de la Inteligencia Artificial (IA) como campo de investigación, hasta el año 2011, se han producido importantes avances en la evolución de la IA. Los impulsores de la conferencia de Dartmouth fueron: John Mcarthy (Dartmoth College), Marvin L. Minsky (MIT), Nathaniel Rochester (IBM, y Claude Shannon (Laboratorios Bell). Cada uno de ellos era líder en áreas cruciales para el nacimiento de la IA. McCarthy en la formulación de conceptos de IA, así comoMinsky en el desarrolloaprendizaje de GPUsmáquinas y equiposredes neuronales, Rochester en hardware y arquitectura de computacióncomputadoras, y Shannon en general.teoría de la información. Sus conocimientos y colaboraciones fueron fundamentales para establecer una base sólida que permitió el desarrollo y crecimiento de la IA como una disciplina de investigación.

DuranteA estepartir período,de unoese momento, y creciendo sobre los cimientos de las teorías, desarrollos conceptuales y tecnológicos acumulados hasta ese momento, se fueron sucediendo logros técnicos y tecnológicos que han desembocado en la irrupción aparentemente imparable de la IA en la actualidad. 

Uno de los hitos clave fue la invención del perceptrón por Frank Rosenblatt en 1957.1957. El perceptrón fue uno de los primeros modelos de aprendizaje automático inspirados en las redes neuronales del cerebro humano. El perceptrón, era una evolución de la neurona McCulloch-Pitts, si bien mejoraba a esta al introducir el concepto de aprendizaje automático. Mientras que la neurona de McCulloch-Pitts tenía pesos fijos, el perceptrón permitía el ajuste de los pesos en función de los datos de entrada a través de un proceso de aprendizaje simple, lo que permitía que el modelo aprendiera a clasificar diferentes patrones de datos automáticamente. Esta capacidad de aprender de los datos fue un avance significativo hacia el desarrollo de algoritmos más avanzados de aprendizaje automático y redes neuronales.

Seymour Papert, que trabajó junto con Marvin Minsky y ambos fueron coautores de un libro muy influyente llamado "Perceptrons" en 1969, que exploraba las limitaciones y las capacidades de los perceptrones y las redes neuronales. Su trabajo junto con Minsky fue crucial para entender y analizar las capacidades y limitaciones de estos modelos, lo cual fue fundamental en el desarrollo temprano de la inteligencia artificial y el aprendizaje automático.

"El perceptrón es el embrión de una computadora que será capaz de hablar, caminar, ver, escribir, reproducirse y ser consciente de su existencia" Seymour Papert

image.png

Comparativa gráfica entre una neurona y el perceptrón. https://inteligenciafutura.mx/english-version-blog/blog-06-english-version

Sin embargo, a pesar de sus prometedoras capacidades, pronto surgieron limitaciones y desafíos que llevaron a un declive en la investigación de la IA, conocido como el "primer invierno de la IA". La citada publicación "Perceptrons" en la que también se mencionaban las limitaciones del mismo anticipó ese declive.

En el "primer invierno de la IA", que tuvo lugar durante la década de 1970 y principios de la década de 1980, los avances en la IA se estancaron debido a la falta de resultados prácticos y las expectativas excesivas. El financiamiento se redujo y muchos investigadores abandonaron el campo.

Sin

Si embargo,bien, aún sin financiación a gran escala, los trabajos y desarrollos teóricos siguieron produciéndose y en 1974 el matemático y economista Paul Werbos publicó su tesis doctoral en la que introdujo el concepto del algoritmo de retropropagación (backpropagation)  que es fundamental para entrenar redes neuronales multicapa. Este algoritmo se convirtió en una base crucial para el desarrollo del aprendizaje profundo, facilitando el entrenamiento eficaz de redes neuronales y contribuyendo al avance de la inteligencia artificial.

image.png

Esquema gráfico del funcionamiento del algoritmo de retropropagación. https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/

A grandes rasgos el algoritmo de retropropagación introduce el posible error cometido en la predicción realizada por el algoritmo respecto al resultado esperado, permitiendo a la red neuronal ajustar los pesos de los cálculos que se realizan en las capas de neuronas con el objetivo de afinar cada vez mas el resultado final.

Avances como la retropropagación, el nuevo enfoque de los desarrollos que se centraban en problemas concretos, lo que resultó en lo que se dio a denominar Sistemas Expertos, así como la fundamentación de los sistemas en la gestión estructurada de grandes cantidades de datos condujo a mediados de la década de 1980,1980 huboa un resurgimiento en la investigación de la IA cony enfoquesa renovados,una vuelta de la financiación, impulsada no solo por iniciativa privada sino también por proyectos nacionales como losen sistemasJapón expertoso yEstados elUnidos.

aprendizaje

XXXSEGUIR simbólico.AQUIXXX

A medida que avanzaban los años, el desarrollo de GPUs más potentes se convirtió en un factor clave en el impulso de la IA. En 2006, se lanzó la GPU NVIDIA GeForce 8800 GTX, que ofrecía una potencia de cómputo sin precedentes para su época, acelerando el entrenamiento de modelos de IA y permitiendo realizar cálculos paralelos masivos.

Durante este período, también se produjeron hitos notables. En 1997, el sistema de IA Deep Blue de IBM derrotó al campeón mundial de ajedrez Garry Kasparov, marcando un hito significativo en la capacidad de las máquinas para competir con los seres humanos en juegos complejos.

A pesar de los avances, la IA experimentó otro invierno en la década de 1990 debido a la falta de avances prácticos y el desafío de lograr la inteligencia artificial generalizada. Sin embargo, el resurgimiento de la IA en la década de 2000, impulsado por el aprendizaje profundo y las redes neuronales convolucionales, marcó un cambio de paradigma en la capacidad de las máquinas para el reconocimiento de patrones y el procesamiento de datos complejos.

En resumen, desde la conferencia de Dartmouth hasta 2011, la evolución de la IA estuvo marcada por avances y desafíos. El desarrollo del perceptrón y los inviernos de la IA ilustran los altibajos y las dificultades en la investigación de la IA. Sin embargo, el resurgimiento de la IA, impulsado por el desarrollo de GPUs más potentes y enfoques renovados, sentó las bases para los avances significativos en el aprendizaje automático y el procesamiento de datos complejos.

"Attention is all you need." - Vaswani et al., "Attention Is All You Need" (2017)

"Los modelos de lenguaje como ChatGPT pueden ser herramientas increíblemente poderosas, pero también conllevan una gran responsabilidad para garantizar que se utilicen de manera ética y segura." - Sam Altman

Avances teóricos IA

Durante el periodo de 2011 a 2022, hubo un notable avance en las tecnologías de Inteligencia Artificial (IA), particularmente en el desarrollo y aplicación de redes neuronales, redes neuronales convolucionales (CNN), redes neuronales LSTM (Long Short-Term Memory), así como arquitecturas de encoders y transformers. Estas tecnologías han sido fundamentales para el procesamiento de imágenes, el procesamiento del lenguaje natural y otras tareas de IA. Aquí se presenta una visión general de su evolución:

1. Redes neuronales: Las redes neuronales han sido ampliamente utilizadas en la IA durante este periodo. Se han mejorado los algoritmos de entrenamiento, como el descenso de gradiente estocástico (SGD) y las técnicas de regularización, lo que ha permitido entrenar modelos más profundos y precisos. Además, se han desarrollado nuevas arquitecturas, como las redes neuronales residuales (ResNet) y las redes neuronales generativas adversariales (GAN), que han mejorado aún más el rendimiento y las capacidades de la IA.

2. Redes neuronales convolucionales (CNN): Las CNN han experimentado un gran avance en el procesamiento de imágenes y la visión por computadora. En 2012, el modelo AlexNet revolucionó el campo al ganar la competencia ImageNet, superando con éxito a los enfoques tradicionales. Desde entonces, se han propuesto y mejorado diversas arquitecturas de CNN, como VGGNet, InceptionNet y ResNet, que han superado los límites de precisión en tareas de clasificación, detección y segmentación de objetos en imágenes.

3. Redes neuronales LSTM (Long Short-Term Memory): Las LSTM son un tipo de red neuronal recurrente (RNN) que han sido fundamentales en el procesamiento del lenguaje natural y en la generación de texto. Las LSTM resuelven el problema de las RNN tradicionales al permitir el almacenamiento y el acceso a información a largo plazo, lo que las hace más efectivas en el procesamiento de secuencias largas. Estas redes han mejorado significativamente la capacidad de modelar y generar texto coherente y natural.

4. Arquitecturas de encoders: Las arquitecturas de encoders, como los autoencoders y las redes neuronales convolucionales encoders (CNN-Encoders), se han utilizado para la extracción de características y la representación eficiente de datos. Estas arquitecturas permiten comprimir la información relevante de una entrada en una representación latente de menor dimensión, lo que facilita el procesamiento y análisis posterior.

5. Transformers: Los transformers son una arquitectura de redes neuronales que ha revolucionado el procesamiento del lenguaje natural y otras tareas de secuencia. Introducidos en 2017, los transformers se basan en el mecanismo de atención para capturar relaciones entre elementos en una secuencia. Esta arquitectura ha demostrado un rendimiento sobresaliente en tareas como la traducción automática, la generación de texto y el procesamiento del lenguaje natural.

Es importante destacar que durante este periodo también se han producido avances en otros campos de la IA, como el aprendizaje profundo, el aprendizaje por refuerzo y la transferencia de aprendizaje. Además, la disponibilidad de conjuntos de datos masivos y

Personajes

En 2017, Goertzel fue el director científico de Hanson Robotics, la empresa que desarrolló a Sophia, uno de los robots más avanzados en términos de apariencia y capacidad de interacción social.

Durante una entrevista, se le preguntó a Sophia si podría destruir a los humanos. En ese momento, Sophia respondió de manera inesperada diciendo: "OK, lo destruiré", lo cual generó cierta inquietud y controversia. Ante esto, Goertzel intervino rápidamente para aclarar que se trataba de una broma y que Sophia no tenía la capacidad real de hacer daño a los humanos.

Esta anécdota resalta la importancia de la comunicación y el contexto en la interacción entre humanos y robots. Aunque Sophia es un avance destacado en la creación de robots sociales, también pone de manifiesto los desafíos y responsabilidades éticas asociadas con el desarrollo de la inteligencia artificial y la necesidad de establecer límites claros en cuanto a su comportamiento y capacidades.

La colaboración de Goertzel con Sophia es solo una muestra de su amplia trayectoria en la investigación de la inteligencia artificial y su compromiso con la exploración de nuevas fronteras en este campo.

Hitos IA

Del algoritmo tradicional a las redes neuronales

A partir de 2011, ha habido varios hitos importantes y avances significativos en el campo de la Inteligencia Artificial (IA). Aquí hay algunos de ellos:

2011: El sistema Watson de IBM, basado en IA, gana en el programa de televisión Jeopardy!, derrotando a dos concursantes humanos destacados. Esto marcó un hito importante en el procesamiento del lenguaje natural y la capacidad de las máquinas para comprender y responder preguntas complejas.

2012: AlexNet, un modelo de redes neuronales convolucionales desarrollado por Alex Krizhevsky, gana el desafío ImageNet Large Scale Visual Recognition Competition (ILSVRC) con un rendimiento sorprendente. Esto desencadenó el auge del aprendizaje profundo en el campo de la visión por computadora y sentó las bases para avances significativos en la detección de objetos y el reconocimiento de imágenes.

2014: Google presenta su sistema de IA llamado Google DeepMind y lanza su primer gran proyecto de IA conocido como AlphaGo. AlphaGo derrota al campeón mundial de Go, un juego extremadamente complejo y estratégico, demostrando la capacidad de la IA para superar a los mejores expertos humanos en juegos de mesa.

2016: Generative Adversarial Networks (GANs), un tipo de modelo de IA propuesto por Ian Goodfellow, permite generar contenido nuevo y realista, como imágenes y música, a través de un proceso de competencia entre dos redes neuronales. Esto revoluciona la generación de contenido y abre nuevas posibilidades en el campo de la creación artística asistida por IA.

2018: El modelo de lenguaje GPT (Generative Pre-trained Transformer) de OpenAI, desarrollado por el investigador de IA Andrej Karpathy, demuestra una capacidad asombrosa para generar texto coherente y de alta calidad. Esto destaca el poder del aprendizaje automático basado en modelos de lenguaje para la generación de texto.

2020: La IA se utiliza de manera destacada en la lucha contra la pandemia de COVID-19. Se desarrollan modelos de IA para el diagnóstico temprano, la predicción de la propagación del virus y la búsqueda de tratamientos potenciales, lo que destaca el papel crucial de la IA en la medicina y la salud pública.

Estos son solo algunos de los hitos importantes que han ocurrido en el campo de la IA a partir de 2011. La IA continúa avanzando rápidamente, con nuevos descubrimientos, aplicaciones innovadoras y desafíos éticos y sociales que surgen a medida que la tecnología evoluciona.